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Abstract

This dissertation is concerned with modeling and reasoning about impure ML-like higher-
order programs. Our work is based on the algebraic theories of computational effects
proposed by Plotkin and Power. In particular, we present an extension from the algebraic
value and effect theories to a fine-grained call-by-value intermediate language. Whilst
this extension has a straightforward definition and is intuitively correct, the proof of its
conservativeness requires extensive work. Before one is able to correctly reason about the
terms in the value and effect theories and the corresponding terms in the intermediate
language, it is necessary to effectively decide provable equality in the intermediate lan-
guage. As a result, we spend a significant proportion of this dissertation on developing
a suitable normalization by evaluation (NBE) algorithm to compute canonical normal
forms in the intermediate language. The comparison of these normal forms provides us
with the necessary decision procedure for proving the conservativity theorem. The NBE
algorithm we define is a generalization of the usual presentations of NBE where normal
forms are identified up to equality rather than modulo the given value and effect theories.
However, the usual normalization results arise as special cases when the value and effect
theories do not contain equations. We have also formalized the syntax of the intermediate
language together with the formally verified NBE algorithm in the interactive theorem

prover and functional programming language Agda.
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Chapter 1
Introduction

Nowadays, an increasing amount of our everyday lives is governed by computers and
computer programs. It is therefore important to realize that these programs do not run
in isolation but instead interact with other programs, with their environment and with the
human users. As a result, the behavior of such programs is usually complex and tends to
be erroneous. Therefore, it is essential to develop rigorous mathematical tools to reason
about computational effects these programs have on their environment. Some notable
examples are reading from and writing to memory, throwing and catching exceptions,

performing input/output operations, deterministic and non-deterministic control flow.

The presence of such computational effects is especially subtle in the realm of functional
programming languages where, historically, programs have been modeled as pure mathem-

atical functions. For example, consider the following program written in ML-like syntax

function read_and_write f loc1 loc2 =
let a = (read loc1) in
letb =(fa)in
let ¢ = (write loc2 zero) in

return a

which cannot be modeled as a pure function as it performs reading from and writing
to global memory. However, the last two decades have seen immense achievements in
developing mathematical theories to accommodate the impurity arising from computa-
tional effects in functional programming languages. In his seminal work, Moggi [28, 29|
demonstrated how monads describe computational effects and the mathematics behind
them. Later, Plotkin and Power [36, 37| discovered that there is a more natural way of
identifying computational effects, namely, algebraic theories. They also showed that these

algebraic theories of computational effects give rise to the monads Moggi proposed.
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The specific notion of algebraic theories of computational effects we investigate in this
dissertation, called value and effect theories, were proposed by Plotkin and Pretnar [33].
We discuss how these theories can be extended to an intermediate language suitable for
giving a mathematical account of full ML-like impure programs, not just the individual
effects. The intermediate language that we investigate is a fine-grained call-by-value lan-
guage first introduced by Levy, Power and Thielecke [21]. It has a syntax-level separation
between values and computations and, therefore, is suitable for extending both value and

effect theories.

Whilst the extension itself may seem straightforward, one still needs to formally prove that
it is conservative. This means that the extension must preserve the behavior determined
by the algebraic theory while not introducing any new impure behavior previously not
stated in the algebraic theory. To prove the conservativity theorem, one first needs to
effectively decide provable equality in the intermediate language. For this reason, we spend
a considerable proportion of this dissertation on defining a normalization algorithm. We
use a semantic reduction-free normalization method, called normalization by evaluation
(NBE) [7, 8], that computes normal forms (i.e., a subset of terms that are canonical
representatives of provably equal terms) by inverting the interpretation of syntax into a

suitable denotational semantics.

interpretation

syntax
denotational semantics

normal forms

reification

The NBE algorithm we define is a generalization of the usual presentations of NBE (e.g.,
[8, 14]) allowing us to normalize the terms modulo the given value and effect theories. We
have developed a formally verified implementation [1| of this algorithm in a functional
programming language and interactive theorem prover Agda. We chose to work in Agda
because (i) an interactive theorem prover provides a convenient working environment, (ii)
Agda’s strong type theory gives an additional correctness guarantee to our work and (iii)
the end-result is a functional program. To our knowledge, this is the first formalization

of NBE for the fine-grained call-by-value intermediate language.

The denotational semantics we define follows the usual categorical approach [32], namely,

given a suitable category, we interpret types as its objects and programs as its morphisms.
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We have chosen to work in the language of category theory [23] rather than conventional
set theory to develop this dissertation in a uniform algebraic setting. The particular

tC™ (ie., a category

category we work with is the category of covariant presheaves Se
of functors from the category Ctx of typing contexts to the category Set of sets and
functions). It has been shown [14, 15, 39] that Set®*™ provides appropriate algebraic

structure for characterizing abstract syntax with variable binding and defining NBE.

1.1 Contributions

Our work is based on the previous developments in the areas of using semantic methods of
normalization, e.g., NBE, and modeling computational effects with monads and algebraic

theories. Our own contributions in this dissertation are
e an Agda formalization of the intermediate language,

e an Agda formalization of the value and effect theories we consider together with an

extension to the intermediate language,

e an Agda formalization of the NBE algorithm we define for the intermediate language

together with its correctness proofs,

e a proof of the conservativity theorem for the extension to the intermediate language.

1.2 Structure

In Chapter 2, we give a brief overview of modeling and reasoning about computational
effects. We also survey some different presentations of NBE and give a concise overview of
the meta-language Agda. We continue by defining the fine-grained call-by-value interme-
diate language in Chapter 3 and the value and effect theories together with the extension
to this language in Chapter 4. The main contributions of this dissertation are presented
in Chapter 5 and 6. Chapter 5 contains the NBE algorithm together with its correctness
proofs. Chapter 6 is devoted to proving the conservativity of the extension of value and

effect theories.






Chapter 2
Background

We now elaborate more on the background of our work. We begin by outlining previous
developments in giving a mathematical account of computational effects using monads
and algebraic theories. We also describe the fundamental ideas behind NBE and briefly

overview the meta-language Agda we use to formalize the theory we present.

2.1 Impure programs and computational effects

Our motivation is to investigate how to reason about ML-like impure functional pro-
grams. Recall the example program from Introduction that reads from and writes to

global memory.

function read_and_write f loc1 loc2 =
let a = (read loc1) in
letb = (fa)in
let ¢ = (write loc2 zero) in

return a

This program exhibits many of the intriguing features we are interested in. First, this
program causes computational effects by interacting with its environment, namely, the
global memory. Therefore, it cannot be modeled as a pure mathematical function because
this impure behavior also needs to be taken into account. Second, it is worth noticing that
this program takes a higher-order argument f of function type. As a result, it is possible
to apply f to the value a and possibly cause additional, currently unknown, computational
effects. This becomes especially important when manipulating program code, e.g., finding
normal forms of given programs to decide their intensional equality. Therefore, it is

important to develop mathematically rigorous methods for reasoning about the behavior
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of such programs. However, before modeling full programs, we first discuss two approaches

to developing suitable mathematical theory to capture computational effects.

2.2 Modeling computational effects

In his seminal work [28, 29], Moggi introduced the idea of using monads, more precisely
strong monads, on cartesian-closed categories to give a categorical model of computational
effects which included global and local store, exceptions, input/output, control, non-
determinism and continuations. Moggi’s work builds on the usual categorical approach
for giving denotational semantics to programming languages [32]. For example, if we
would work in the category Set whose objects are sets and morphisms are functions, we

would interpret types as sets of values and programs as functions from values to values.
Following Moggi [28], we define monads as Kleisli triples and illustrate how they are used
to give a mathematical account of the aforementioned impure behavior.
Definition 2.2.1. A Kleisli triple (T,n, *) on a category C is given by a mapping
T : 0b(C) — 0b(C) of objects of C together with

e the unit nx : X - TX,

e given f: X — TY, the Kleisli extension f*: TX — TY,

e Kleisli exponentials (X — TY), exy: (X = TY) x X) — TY) for every pair of
objects (X,Y),

satisfying

e Ny = idry,

o fron=/f,

e gofr=(gf),
with the equivalent monad structure defined by

e I'f=(nyof) given f: X =Y,

o iy =id}y.
This definition illustrates how monads give a semantic account of computations. In cat-
egorical semantics, we can think of such computations as morphisms of type f : X — TY
that, informally, are functions that can cause computational effects while computing their

values. The effects are captured by the monad T wrapped around the return values Y.

For example, non-determinism is modeled as a monad given by the covariant powerset
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functor T'(X) = P(X), singleton sets nx(z) = {x} as unit and big union px(X) = UX as
multiplication. We also see that the Kleisli extension operation enables us to construct
functions from computations to computations and, therefore, is an ideal candidate for

modeling the sequence of multiple impure computations.

Such semantic presentations of computational effects have also found their way into the
syntax of functional programming languages. For example, Haskell [31] uses Kleisli triples
in its syntax with the operations called return and bind (also expressed with the short-
hand do-notation). Moreover, the syntax of the example ML-like program we presented

above is also based on Kleisli triples with the operations written return and let.

Together with this semantic approach, Moggi [28] also presented a formal calculus, called
the computational lambda calculus (A.-calculus), to reason about impure programs. This
language is a coarse-grained version of the intermediate language we use. However, it
turned out that the definition above is not sufficient to give a model of the A.-calculus
(i.e., a monad model). As a result, Moggi identified that one needs the monad to be strong
to transform pairs of values and computations (or computations and computations) to

computations whose values are pairs.
Definition 2.2.2. A strength of a monad on a cartesian-closed category is a natural
transformation

o txy : X xTY - T(X xY)
satisfying

o T'(Ax) ot x = Arx,

o T(axyz)otxxyz =txyxzo (idx X tyz)oaxyrz,

o txy o (idxXy) = nNxxy,

o txyo(idy X py) = pxxy o T(txy) o txry,
where A and « are the following isomorphisms arising from the product-monoidal structure
of C

e \x 1 xX—X,

e axyz: (X xY)xZ— Xx (Y xZ).

A decade after Moggi’s work, Plotkin and Power [36, 37| observed that computational
effects actually determine monads rather than are identified by them. They showed that
identifying computational effects with operations and equations gives a mathematical the-
ory closely corresponding to their computational nature. The monads Moggi proposed

can then be recovered as the corresponding free algebra monads. This notion of algebraic
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effects captures all the aforementioned computational effects with the exception of con-
tinuations that are of different character [36]. More recently, it has been investigated how
tensor products and sums can be used to combine algebraic effects [18] and how they can

be combined with continuations [17].

We make the notion of algebraic effect theories explicit in Chapter 4 together with an
extension to the intermediate language suitable for reasoning about ML-like programs. In
this section, we limit ourselves to a more informal description by illustrating the theory of
non-determinism that is defined as a signature consisting of one binary operation symbol
or together with the equations of the theory of semilattices. These equations require or
to be idempotent x or x = x, commutative z or y = yor z and associative (xory)orz =

zror(yorz).

2.3 Normalization by evaluation

Normalization is often used to simplify equational reasoning by reducing the question of
equality to the comparison of normal forms. Normalization by evaluation (NBE), also
known as reduction-free normalization, first appeared in the work of Martin-Lof [25] for
intuitionistic type theory and was later made precise by Berger and Schwichtenberg |8|
for the simply typed lambda calculus. Multiple authors have later extended NBE to more
advanced type systems and given it more abstract characterizations. For example, Berger
and Schwichtenberg themselves extended it to simply typed lambda calculus with products
and constants |7] while Altenkirch and Uustalu [5] showed how to capture lambda calculus
with booleans. Another extension was given by Filinski [13] who successfully applied NBE
to call-by-name and call-by-value paradigms. A category-theoretical account of NBE was
first suggested by Altenkirch, Hofmann and Streicher [4] and was later extended to simply
typed lambda calculus with binary coproducts by Altenkirch, Dybjer, Hofmann and Scott
[2]. The NBE algorithm we develop in this dissertation has been most influenced by these
categorical approaches together with the thorough semantic analysis carried out by Fiore
[14] together with Balat and Di Cosmo [6].

NBE is based on (i) defining an interpretation map taking syntax to a suitable denotational
semantics and (ii) constructing an inverse, called reification, of this map that extracts
syntactic normal forms from the given semantics. This rather elegant idea is summarized

on the following diagram from Introduction



(i) interpretation

syntax
denotational semantics

normal forms
(ii) reification

where the normalization algorithm is given by a straightforward composition of the inter-

pretation and reification maps.

nf = reification o interpretation

Various authors have considered different, suitably modified, denotational semantics, e.g.,
complete partial orders [13|, Scott-domains [7], sets [5], presheaf categories |2, 4, 14] and
categories of Grothendieck relations [6]. The unifying theme in these different models is
their intensional nature one needs to construct the reification map. In particular, all of the

aforementioned approaches interpret base types as objects carrying syntactic structure.
The correctness of NBE algorithms is usually expressed as the following conditions.

(i) The normalization algorithm preserves normal forms.

(ii) Every term is provably equal to its normal form.
(iii) Provably equal terms have equal normal forms.

These correctness results, especially (iii), rely on the soundness of interpretation, i.e., that
the interpretations of provably equal terms are equal. We will make these rather informal

definitions and correctness results precise when we present our NBE algorithm in Chapter
5.

2.4 Programming and theorem proving in Agda

One of our contributions is the complete verified formalizations [1] of the intermediate
language and our NBE algorithm. This formalization was carried out in the interactive
theorem prover and functional programming language Agda which is based on Martin-
Lo6f’s intuitionistic type theory using the Curry-Howard isomorphism and identifying pro-

positions as types and proofs as programs.



The definitions and theorems we present in this dissertation are given in syntax very
similar to Agda. Therefore, we illustrate programming and theorem proving in Agda
with a central example of the heterogeneous equality (also known as John Major equality)
we use as propositional equality in our formalization. It first appeared in McBride’s PhD
thesis [26] and allows us to form equations between terms of different types. However,
two terms can only be considered actually equal (and hence the equation is provable) if
they are of same type. Therefore, heterogeneous equality enables us to avoid proving the
equality of types in function signatures and incorporate these proofs into proof terms.
We define heterogeneous equality as an inductive data type in Agda with one unique

constructor refl.

data_ = {A:Set}(a:A):{A:Set} - A’ — Set where

refl:a~a

We use Agda’s mixfix syntax _= to follow the usual presentation of equality, e.g., x = y.
The curly braces denote implicit arguments which can be inferred by Agda and omitted
in definitions. In addition, this definition tells us that refl is the only canonical inhabitant
of the equality type _= . However, _= also has the usual properties of symmetry and

transitivity.

sym:{A:Set} - {aa’:Al >a=a —-a =a

sym refl = refl

trans : {A:Set} > {abc:Al 2a=b—>bX=c—aXc

transreflp=p

These proof terms show Agda’s ability to pattern match on function arguments. More
precisely, in the proof of symmetry, we pattern match on the given equality proof of type
a = a’ which gives us the canonical inhabitant refl and unifies a and a’. Similarly, we

pattern match on the proof of type a = b and unify a and b when showing transitivity.

To conclude our overview, we make use of Agda’s postulation mechanism to postulate
an assumption about functional extensionality for _= which cannot be proved in Agda’s
intensional type theory. Such postulates do not have a computational behavior and,

therefore, can render the type theory inconsistent if used carelessly.

postulate
ext:{A:Set}{BB':A—Set}{f:(a:A) > Ba}{g:(a:A) »B a} —»((a:A) »-faxga) —~f=g

Notice that ext works on dependently typed functions f and g. More precisely, the types
of the codomains of f and g depend on the values a passed to the functions. A more

thorough overview of Agda can be found in Norell’s PhD thesis [30].
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Chapter 3
The intermediate language

In this section, we discuss the syntax and semantics of the intermediate language we use
as a basis for the extension of value and effect theories in the next chapter. In particular,
we study the fine-grained call-by-value language (FGCBV) defined by Levy, Power and
Thielecke [21], which is a refinement of Moggi’s A.-calculus [28] and the monadic metalan-
guage A, [29]. We also spend a considerable proportion of this chapter on presenting the
Agda formalization of FGCBV syntax which is later used for defining the extension of
value and effect theories and the NBE algorithm. Our formalization is inspired by some

previous Agda formalizations of simply typed lambda calculus [3, 9].

3.1 Types

Definition 3.1.1. The FGCBV type signature is given by the following grammar

ox=al|f|l|loxolo—=0

where o ranges over types and « and 8 range over base types. In addition, — is the usual
call-by-value function space where functions take values and perform, possibly impure,
computations before returning values. We only consider finite products and leave the

treatment of finite coproducts as a future work outlined in Section 7.1.

The definition gives rise to an inductively defined Agda data type denoting the set of
FGCBV types. Notice that we use A for binary products of types and One for the unit
type.
data Ty : Set where
a:Ty

11



BTy

One : Ty
NA_Ty=Ty—=>Ty
i Ty=>Ty—>Ty

3.2 Contexts

Definition 3.2.1. Typing contexts are given as lists of typed variables. For example, we

write a context I' comprised of n variables as
I'=2x,:0,,Tn_1:0p_1,...,01 : 01
where we call x; : o; the outermost variable.

In Agda, we define contexts as snoc-lists of nameless variables represented by their types

Ctx : Set
Ctx = List Ty

where the snoc-lists are defined inductively.

data List (A : Set) : Set where
[] :ListA
o :ListA— A—ListA

In our formalization, we use de Bruijn indices [11] to encode the variables in contexts T’

with the following definition in Agda.

data_c_: Ty — Cix — Set where
Hd:{l':Ctx}{o: Ty} o€ (T ::0)
T:{I':Cix}{o7: Ty} 0l ol 7)

These indices give an intuitive numeric encoding to the variables in context. The con-
structor Hd points to the variable at the head of the given context, i.e., the outermost
variable. Similarly, Tl points to the variables in the tail of the given context. As a result,

we do not refer to variables with explicit names but instead with their position in contexts.

Definition 3.2.2. A morphism between contexts I' and I is a type-indexed family of
injective renaming functions from de Bruijn indices of I' to de Bruijn indices of I”. This

gives rise to the following definition in Agda

Ren : Ctx — Ctx — Set
RenT'I"={c:Ty} 20l 50el”

12



together with an identity renaming

id-ren:{I":Ctx} - RenT' T

id-ren = id
and the composition of two renamings.

comp-ren:{I'T"I":Ctx} = RenI"I”" — Ren'I" — Ren ' I'”

comp-renfg="f-g

We later became aware that instead of defining the morphisms as injective renaming func-
tions, one could also give them a first-order representation using order-preserving embed-
dings (OPEs) [10, Section 4.5]. However, we continue using the functional presentation

and leave OPEs as future work in Section 7.1.

We often need to weaken both contexts and renamings to introduce new variables. We can

weaken a given context by defining a renaming that introduces a new outermost variable.

wky {T':Ctx}{o: Ty} = RenT (I' :: 0)

wky x =TI x
In addition, we can also define a weakening of other renamings.

wko ({I'T":Ctx}{oc: Ty} =2 RenT'I" = Ren (" :: o) (I" :: )
wks f Hd = Hd
wko f (TIv) = wky (fv)

These weakenings correspond to the objects wk; and wky of the category of weakenings
considered by Altenkirch, Hofmann and Streicher [4]. In addition, we sometimes also need
to exchange two outermost variables in a given context which can be formalized as the

following renaming.

exchange :{I':Cix}{o7:Ty} = Ren(I':7:0) (I" 10 1 7)
exchange Hd = Tl Hd

exchange (T Hd) = Hd

exchange (Tl (Tl x)) = Tl (Tl x)

Notice that we have not formally enforced the injectivity of these renamings. However,
it is straightforward to see that all the considered renamings satisfy this condition. More
precisely, the identity renaming is injective and the composition, weakenings and exchange

preserve injectivity.

Proposition 3.2.3. It is also well known [14] that contexts and renamings form a category

Ctx. O

13



3.3 Value and producer terms

FGCBYV has two separate typing judgments, one for value terms and one for producer
terms (i.e. computations) respectively written as I' =, V : 0 and I' =, M : o (for a
given context I" and type o). The well-typed value and producer terms are defined by the
following typing rules.

var

Dx:ol"kH,2:0 My x:1
) ', Viioy T'hH, Voo ) ', Vioyp X o9
pair L, (V,Vs) 01 X 09 Prol 'k, m(V) oy
Dxiobp, N7 r-,bVveeoe—7 I'e, W:o
lam app
', Az:0N:0c—7 L=, VWt
I'=,V:o ', M:o Ix:obp, N:T
return to
', returnV : o ', Mtox.N:71

These terms are very similar to the simply typed lambda calculus except for the separate
typing judgments and two specific producer terms return and to. Intuitively, return V'
is the trivial producer that takes a value term V and wraps an effect-free computation
around it. M tox.N is a sequencing operation for producers. It takes a producer term
M, computes its value, binds this value to variable z in N and then computes N. In
addition, lambda abstraction gives us call-by-value functions by binding the outermost
free-variable in a producer term while application of two value terms results in a producer

term.

In Agda, we represent value and producer terms using two mutually inductively defined

data types where the constructors correspond to the labeled typing rules above.

data_Fv_ (' : Ctx) : Ty — Set where
var:{o:Ty} o€l =-Ttve

proji :{o102:Ty} 2T Fvoy Aoy =T Fvoy
projo : {o1 02 : Ty} > T'kvoy Aog = T Hv oy

pair:{o1 02 : Ty} > T'tvo; = T'Fvos - T'Fvoy A oo
*:I'v One

lam:{oc7: Ty} =T o)FpTr—=TFvo—T

data _+p_(I': Ctx) : Ty — Set where
return :{oc: Ty} = T'Fvo =T tpo

14



to_i{for:Ty}»>Trpo—- T o)Fpr—=TFpT
app i for:Ty} =»T'tvo—~7—=>Ttvo—=>Ttpr

Here, var x denotes a variable in the given context encoded by the de Bruijn index x.
Other term constructors carry their usual meaning discussed earlier modulo some naming
conventions (e.g., proj; instead of 7). Later, we write I' v o and T Fp o to denote the set

of all well-typed value and producer terms of type ¢ in context I'.

3.4 Algebraic view of value and producer terms

We follow the work of Fiore [14] in using a category of covariant presheaves Set®®™ i.e.,
the category of functors Ctx — Set, to give an algebraic characterization of FGCBV
syntax. This has been discussed in detail for untyped lambda calculus by Fiore, Plotkin
and Simpson [15] and for simply typed lambda calculus by Zsido [39, Chapter 5|. The
category Ctx we defined above is equivalent to the category F | T of untyped contexts
F over types T considered by the other authors.

Definition 3.4.1. We denote the presheaves in Set“*™ as instances of the following record

type in Agda

record Set"Ctx : Set; where
field set : Ctx — Set
act: {I'T":Ctx} > RenI'I” — set’ — setI”

which must satisfy the following identity and composition laws.

id

set X\P setXT
act id-ren
setXT actt set X I 2o set X I

\/

act (comp-ren g f)

Definition 3.4.2. Maps between presheaves are natural transformations between functors
Ctx — Set. In Agda, we use the following short-hand syntax to present the components

of these maps

Set"Ctx-Map : Set"Ctx — Set"Ctx — Set
Set"Ctx-Map XY ={I' : Ctx} —> set XI' —» setY I

15



which have to satisfy the following naturality square.

Set"Ctx-Map X Y
set XTI setYTD
act f act f
set X T Set"Ctx-Map X Y setY D'

Due to space restrictions, we omit the explicit proofs of these three diagrams for the
presheaves we consider. However, these proofs can be found in our Agda formalization
[1]. We will also need to construct products of presheaves for defining the strength of
monads. We write X ® Y for the binary product of two presheaves X and Y and define
them point-wise using the binary products in Set. A more thorough introduction to
presheaves has been given by Mac Lane and Moerdijk [24, § II].

tCtX

Following Fiore [14], we know that the category Se contains the following type-

indexed family of presheaves of variables.
Vo(T) = A{z|(x:0) €T}

The algebraic notion of value and producer terms can therefore be given as an initial

algebra for the signature endofunctor
<Fv,Fp> : (SetCtX)Ty % (SetCtX)Ty SN (SetCtX)Ty % (SetCtX)Ty

with the following components.

(Fo(X,Y))a = Vo + (Eu(X,Y))a

(Fo(X,Y) = Vi+1+(E(X,Y))h

(Fo(X,Y))o1x0 = Vorxor + (Xoy X Xo,) 4+ (Bo(X,Y)) o x0
(Fo(X,Y))osr = Vorr + (V)7 + (Ey(X,Y))5 s
(Fp(X,Y))o = Xo + (E,(X.Y)),

(Bu(X,Y))- = Hpery Xoxo + Xoxr

(Ep(X,Y)), = ety (Xomsr X Xo) + (Yo x (Y7)"7)

Definition 3.4.3. The initial (F,, F,)-algebra giving us a term model can be explicitly

represented by type-indezed families of presheaves

16



e VTerms,(I') = {t|te (U'Fvo)}
e PTerms,(I') = {t|t€ (I'Fp o)}

describing well-typed value and producer terms of a given type. These families of presheaves
have a straightforward definition in Agda with set assigning a set of well-typed terms of

given type to a given context, e.g.,

VTerms : Ty — Set"Ctx
VTerms o = record {
setI'=1"Fvo;
actft =Fv-rename f t

}

The actions of renaming on value and producer terms

Fv-rename :{o : Ty}{I'T":Cix} - RenI'I" - T'tvo - T"Fvo
Fp-rename :{o : Ty}{I'T":Ctx} - RenI'I" - T'Fpo —-T"Fpo

are defined by straightforward structural recursion.

Fv-rename f (var x) = var (f x)

(

Fv-rename f (proj; t) = proj; (Fv-rename f t)

Fv-rename f (projs t) = projs (Fv-rename f t)

Fv-rename f (pair t u) = pair (Fv-rename f t) (Fv-rename f u)

Fv-rename f x = x

Fv-rename f (lam t) = lam (-p-rename (wks f) t)

Fp-rename f (return t) = return (Fv-rename f t)

Fp-rename f (t to u) = Fp-rename f t to Fp-rename (wks f) u
(

Fp-rename f (app t u) = app (Fv-rename f t) (-v-rename f u)

We see that, except for three cases, the renaming is pushed unchanged inside the term
constructors. However, for variables, we use the renaming to compute a new de Bruijn
index in context I"V. For lambda abstractions and sequenced producers, we use a weakened

renaming to avoid renaming the outermost free variable that the term constructor binds.

3.5 Substitutions

To present the equational theory of FGCBV, we first need to define substitutions. We
define a notion of parallel substitutions in which all free variables in a given context are

substituted with value terms.
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Definition 3.5.1. Given two contexts I' and IV, a parallel substitution is defined as a

family of functions from de Bruijn indices in I" to well-typed value terms in I".
This gives rise to a straightforward definition in Agda

Sub : Ctx — Ctx — Set
SubI'T"={o:Ty} 50l -T"Fvo

together with the identity substitution

id-subst : {I' : Ctx} - SubI' T’

id-subst x = var x
and the composition of two substitutions

comp-subst : {T'I" I : Ctx} - Sub "I — Sub I'I" — Sub ' T'”

comp-subst f g = subst-vf-g
and the extension of a substitution with a given value term.

ext-subst : {I'I" : Cix} {o : Ty} = SubI'" - I"Fvo — Sub (I' ::0) I
ext-subst ft Hd =t
ext-subst ft (Tl x) = f x

Similarly to the weakening of renamings, we define a corresponding notion, called lifting,
for substitutions that passes the new outermost variable through unsubstituted.

lift : {C' I :Ctx} {o : Ty} = Sub'I” — Sub (I'" :: o) (I :: 0)

lift f Hd = var Hd

lift f (Tl x) = Fv-rename wk; (f x)
In addition, we can also define the action of substitution

subst-v: {I'T":Ctx} - SubI'I” - {oc:Ty} = T'Fvo - I"Fvo
subst-p:{I'T":Ctx} - SubT'I" - {o: Ty} > T'tpo—-T"Fpo

on both value and producer terms by straightforward structural recursion.

subst-v f (var x) = f x

(
subst-v f (proj; t) = proj; (subst-v f 1)
subst-v f (projs t) = projs (subst-v f 1)
subst-v f (pair t u) = pair (subst-v f t) (subst-v f u)
subst-v f x = x
subst-v f (lam t) = lam (subst-p (lift f) t)
subst-p f (return t) = return (subst-v f 1)
subst-p f (t to u) = subst-p f t to subst-p (lift f) u

(

subst-p f (app t u) = app (subst-v f t) (subst-v f u)
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The one-place substitutions M [V//x], we use in the more informal presentation of FGCBV
equational theory, can be accommodated in this formalization by subst-p (ext-subst id-
subst V) M. Intuitively, this means that all free variables in M, besides the outermost, are

substituted with themselves and the outermost is substituted with V.

3.6 Equational theory

We now present the equational theory of FGCBV. The theory is given by two sets of
equations between well-typed terms in context, written as I' =, V = W : ¢ for well-typed
value terms and I' =, M = N : ¢ for well-typed producer terms. We begin by presenting

the equations in natural-deduction style.

', Viioy T'H, Voo

. Fh, (A, Va) = Vi : o,
=, v:1
1 TF,V=x:1
', V:op x o
(s 'k, V= (m((V),m(V)) 01 X 09
N ', Vo— 71
K ', V=XM:0o(Vz):o—=71

ez:oFpM:7 ', Vo
b 'k, Ae:o M)V = M[V/x]: 7

' V:ie INw:ok, N:T
pto I'F, returnVtox. N = N[V/z| : 7

', M:0 Iz:obyz:0
I'-, M =Mtox.returnz : o

nto

', M:0 I'wv:obp, N:m Iy:7k, P:ip
I'F, (Mtoz.N)toy.P = Mtox.(Ntoy.P):p

assocto

Moreover, we require this equational theory to be an equivalence relation which is also
compatible with all term constructors, i.e., a congruence relation. We make this explicit in
the Agda definition below. We present both sets of equations using two mutually defined

inductive data types that are indexed over contexts and types and whose constructors
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correspond to the named equations above.

The set of equations between value terms consists of four blocks, namely, equations of an

equivalence relation, equations of a congruence relation, S-equations and n-equations.

data_Fv = :(I':Ctx) =2 {oc: Ty} =T Fvo — I' v o — Set where

=-refl:{[":Ctx}{o:Ty}{t:TFvo}—-THvi=t
=-symm:{[":Cix}{oc : Ty} {tu:T'Fvo} >Tkvi=u—->THFvu=t
=trans : {I' :Ctx} {o : Ty} {tuv:T'Fvo} T Fvt=u - TkFvu=v—-Ttvt=v

cong, {I':Ctx} {o1 o2 : Ty} {tt : T Fvoi}{uv:Tkvos}—-ThHvi=t T kvu=u

— kv pairtu=pairt v
congproj; :{I' : Cix} {o1 o2 : Ty} {tu:T'Fv oy Ao} > T'Fvt=u— I' v proj; t = proj; u
congprojs : {I' : Ctx} {o1 o2 : Ty} {tu:T'Fv oy Ao} - T'Fvit=u— I v projs t = projs u
conglam :{I" : Ctx} {o 7 : Ty} {tu: T otpr} > (o) Fpt=u—TFviamt=lamu

Bx1:{L:CtX} {102 : Ty} {t: T Fvo}{u:T'Fvos} — IT'Fvproj; (pairtu) =t
Bxg i {l' :Cix}{o1 00 : Ty} {t: T'Fvoi}{u:T Fvos} — ' v projs (pairtu) =u

nx Al :Cix}{t: TFvOne} - T'Fvt=x%
nx {L :Cix}{o1 oo : Ty} {t: T'Fv oy A og} — ' vt = pair (proj; t) (projs 1)
n—:{I':Ctx}{o7:Ty}{t:'vo — 7} —» ' Fvlam (app ((Fv-rename wk; 1)) (var Hd)) =t

The set of equations between producer terms consists of five blocks, namely, equations of
an equivalence relation, equations of a congruence relation, S-equations, one n-equation

and the associativity equation.

data_Fp = :(I':Cix) > {o: Ty} = T'Fpo — I Fp o — Set where

=-refl:{[":Cix}{o:Ty}{t: TFpo} > TFpt=t
=-symm:{[":Cix}{o:Ty}{tu:T'tpo} >T'Fpt=u—TFpu=t
=trans : {I': Cix} {o : Ty} {tuv:T'tpo} =T HFpt=u—->Ttrpu=v—-Ttpt=v

congapp :{I':Ctx}{o7: Ty} {tt:T'+vo —=7}{uu :T'rveo} >THvi=t - THvu=1
—TFpapptu=appt' v
congto : {I':Ctx}{o7: Ty} {tt :Ttpo}{fuv:(Luo)Fpr}—=>TFpt=t > T :0)Fpu=1v
—TFpttou=ttou
congreturn : {I': Ctx} {o : Ty} {tt' : T'Fvo} > T FHvi=t - T Fpreturnt =returnt’
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B—:{I:Cix}{or:Ty}{t: (L o)Fp7i{u:T Fvo}

— I' -p subst-p (ext-subst id-subst u) t = app (lamt) u
o {T':Citx}{or:Ty}{t:(Czo)Fp7i{u:T Fva}

— I' Fp (return u) to t = subst-p (ext-subst id-subst u) t

nto :{[' :Cix}{o : Ty} {t : ' Fp o} — ' Fp t =t to return (var Hd)

assocto : {I':Ctx}{o7 :Ty}{t: Tkpo}{fu: (T o)Fpri{v: T =7)Fp}

— I'Fp (ttou) to v =t to (u to Fp-rename exchange (-p-rename wk; v))

As we have not changed the names of the equations, the reader can easily compare them
with the presentation in natural deduction style. The most significant difference appears

in assocto where we have explicitly weakened v and swapped the two outermost variables.

3.7 Denotational semantics

To be able to develop the NBE algorithm in Chapter 5, we first need to define the
denotational semantics of FGCBV. The semantic model we consider for FGCBYV in this
dissertation is the monad model on a cartesian-closed category C discussed in Section 2.2.
We follow the usual approach [32] of giving categorical semantics by interpreting types as

objects of C and judgments as morphisms of C.

We begin by explicitly defining the objects that individual FGCBV types denote.
Definition 3.7.1. The interpretation [—] : Ty — Ob(C) of FGCBYV types is given by
structural recursion on types.

e [a] = a distinguished "base type object" of C

[8] = a distinguished "base type object" of C

e [1] = the terminal object of C
o [o1 X 03] = [o1] X [o2] (using binary products in C)
o [o—7]=][c] = T[] (using Kleisli exponentials in C)

Later, we refer to the objects that FGCBYV types denote as semantic values to emphasize
that they stand for values computed by programs. This interpretation is extended to

contexts in the usual way by using finite products in C.

IT] = [xn : Oy Tp-1 : Onety ooy @1 2 01]) = [on] X [on-1] X ... X [o1]
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Definition 3.7.2. The interpretation of value and producer terms takes syntactic well-
typed terms I' -, V : 0 and I" -, M : ¢ to morphisms [[' F, V : o], : [I'] — [o] and
[T, M :o],:[I'] = T[e] in C. This gives rise to two mutually defined interpretation
maps.
o [[z;:0,T"F x;: 0]y : [T] X [o:] x [T'] — [o:]
[x:]oe=me
[CEYx: 1], : [T] — [1]
[*], e =
[T Y (V1,V3) : 01 X 03], : [T] — [o1] % [o2]
[(Vi, Vo)lve = (Vilve, [Va]uve)
[T (V) s oi]w : [T] = [oi]
[7i(V)]oe = mi([V]ve)
[l FP returnV : o], : [I'] = T[o]
[return V], e = np([V]ve)
[T'FP Mtox.N:7],: '] = T[]
[Mtoxz.N],e= (\(e,d).[N]p(e,z — d))* (t (e, [M]pe))
[TFAe:o.N:o—7],: [I'] = ([c] = T7])
[z : 0.N] = Ay for,rm [V
[CEPVW ], [I] — T[7]
[VWlpe = epoprm([V]ee [W]oe)
where
o Axyry:C(X xY,TZ)=C(X,Y = TZ)
o txry: (X =>TY)x X > TY

This definition makes it clear that the monad unit 7 is the semantic counterpart of the
trivial producer return. Intuitively, it takes a value and returns an effect-free computa-
tion. In similar fashion, the Kleisli extension _* is the semantic counterpart of sequencing

producer terms with to.

Theorem 3.7.3. The defined interpretation of FGCBYV into a monad model is sound and

complete with respect to the equational theory defined in Section 3.6.

Proof. This has been shown by Levy, Power and Thielecke [21, Theorem 4.7|. In particular,
they first formulated a sound and complete interpretation for FGCBYV into closed Freyd
categories and then showed that giving a closed Freyd category is equivalent to giving a

monad model. O
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Chapter 4

Effect theories

In this chapter, we discuss the use of algebraic theories for reasoning about computational
effects. We first recall the formal definition of these value and effect theories and then

define an extension to the FGCBYV intermediate language.

4.1 Value and effect theories

The algebraic value and effect theories we consider in this dissertation were first defined
by Plotkin and Pretnar|33]. Mggelberg and Staton [27] have defined a similar notion of
value and effect theories together with an extension to FGCBV. However, they focus on

generic effects [37] rather than algebraic effects discussed in this dissertation.

Definition 4.1.1. A wvalue signature ¥, is a signature of a many-sorted algebraic theory
consisting of a set of base types 3, a subset « of base types, called arity types, and function
symbols f : (8) — 3 where B denotes a vector f31, ..., B,.

Value terms are built from variables and function symbols in the usual way as illustrated

by two typing rules.

F"Ullﬂl F"Uniﬁn
Dyx:6,1"Fx:p CE f(ug, .o B
Definition 4.1.2. A walue theory Ty = (Xyal, Eval) consists of a value signature X,

and a set of equations F.,, of the form I' - v; = vy : § between well-typed value terms
'Fovi:Band I'F oy .

Definition 4.1.3. An effect signature Y. consists of operation symbols op : 3; oy, ...,

where 3 is a list of base types of parameters and oy, ..., a,, are lists of argument arity
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types.

We follow the usual notation by writing op : a;, ..., a,, when 3 is empty and the operation

does not take parameters. In addition, we write op : 3; n when all the oy, ..., a,, are empty.

Effect terms are given by the following typing judgments

'Fv:B w:(B)eA Trp:p ey :a;Abgt; .. Tx, o Abpt,
A Fpw(v) A Fgop(p; @yt gty .., @yt i ty)

where w ranges over effect variables, p ranges over parameters and the additional contexts

A consist of lists of effect variables.

Writing @; : «;.t; above means that an argument ¢; of an operation is dependent on the
outcome of the corresponding effect. Plotkin and Pretnar proposed this effect-dependency
to finitely describe effects that could have an infinite number of outcomes. In addition,

the explicit use of parameters p allows finite descriptions of infinite families of operations.

Definition 4.1.4. An effect theory Teog = (Xefr, Eerr) consists of an effect signature Yog
together with a set of equations F.g of the form I'; A g t; = t5 between well-typed effect
terms A Fp ¢t and T A Fg to.

4.1.1 Example effect theories
Non-determinism

To describe non-determinism, we begin by taking an empty value theory and an effect
signature consisting of just one operation symbol or : 2. By using infix notation and
writing t or u, we describe a computation that non-deterministically continues either as ¢
or u. The effect theory is then given by this effect signature together with the equations

of the theory of semilattices as mentioned at the end of Section 2.2.

Deterministic choice

The theory of deterministic choice describes the usual notion of booleans and if-conditionals
while being a simple and intuitive example demonstrating the use of parametrized oper-

ations and non-empty value theories.

We begin with a value signature consisting of a base type bool and nullary function
symbols true : bool and false : bool with no equations. The effect signature consists

of one operation symbol if : bool;2. To show the close correspondence with the usual
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notion of if-conditionals, we use the infix notation and write the corresponding terms as

if pthentelseu. The effect theory consists of the following intuitive equations.
o I Alpgiftruethentelseu =1t
o I Alpiffalsethentelseu = u

o I'; A g if vthen (w(true)) else (w(false)) = w(v)

Global store

The third example of an effect theory we consider is global store, i.e., reading from and
writing to global memory. The value signature consists of a base type loc of memory
locations and data of data together with appropriate function symbols to represent specific
locations and data items, e.g., nullary functions denoting locations. One could also add
specific function symbols to modify the data, e.g., binary addition function for numeric
data. The effect signature consists of two operation symbols for reading data from memory
read : loc; data and for updating data in memory write : loc,data; 1. The effect theory

consists of the seven equations described in detail by Plotkin and Power [36].

4.2 Models of value and effect theories

We now briefly summarize the models of value and effect theories defined by Plotkin and
Pretnar [33].

Definition 4.2.1. A model of a value theory in category C with finite products is given
by objects [o], [#] for all base types and morphisms [f] : [8] — [5] for all function
symbols with [B] = [51] x ... X [B.]. Value terms I' I-: 8 are interpreted as morphisms
[I'] — [o] that are required to satisfy all the equations in E.,.

Definition 4.2.2. A model of an effect theory in category C with finite products is given
by an object X together with a family of morphisms

-----

to satisfy all the equations in Fg.

Such models of effect theories form a category Mod.g. If C is locally presentable [36], there
exists a forgetful functor U : Mod.g — Set that maps models to their underlying sets. This
forgetful functor also has a left adjoint F' that induces a free monad T' = U F’ corresponding
to the monad proposed by Moggi to model the computational effect corresponding to the
effect theory.

25



4.3 Extension to the intermediate language

In this section, we extend the value and effect theories of Plotkin and Pretnar to the
FGCBYV intermediate language. We write FGCBV4 for FGCBV extended with value
and effect theories.

Definition 4.3.1 (Extension of value theories).

e Every base type in the value signature defines a corresponding base type in FGCBV ..

e Every function symbol f : 3 — 3 defines a typing judgment of value terms.

r-,Vi:g8 .. 'k, V,:06,
Iy f(V1,, Vo) B

fun

e Every equation I' F v; = vy : [ between well-typed value terms defines a corres-

ponding equation between well-typed FGCBV ¢ value terms.

This definition gives rise to the following illustrative extension to the Agda data type of
value terms. We define the rudiments of a value theory and present the signatures of the
straightforward extension maps to the corresponding structure in FGCBV,.g¢. First, we

define an inductive set of base types

data BaseTy : Set where
« : BaseTy
B : BaseTy

inducing a straightforward extension map to FGCBV4.
extend-ty : BaseTy — Ty
Next, we define contexts of variables of base types

ValCtx : Set
ValCtx = List BaseTy

together with a corresponding notion of de Bruijn indices

data_<’_ : BaseTy — ValCtx — Set where
Hd : {I" : ValCtx} {o : BaseTy} - o €' (I' ;1 0)
TI:{T" : ValCtx} {oc 7 : BaseTy} o €' I' o€ (I':i7)

inducing straightforward extension maps to FGCBV .

extend-valctx : ValCtx — Ctx

extend-valvar : {I" : ValCtx}{o : BaseTy} — o €' I' — (extend-ty o) € (extend-valctx I')
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Next, we define value terms as an inductive data type. For illustration, we present vari-

ables and one example binary function symbol

data_F_ (I'" : ValCtx) : BaseTy — Set where

var:{c :BaseTy} o€’ I' 5T tFo
fun:THF—->TFB—-TFS

that gives rise to the corresponding FGCBV g value term

data_Fv_(I' : Ctx) : Ty — Set where

fun: TV —>THvgB —>TFvS

and induces a straightforward extension map.

extend-val : {I" : ValCtx}{c : BaseTy} — I' - ¢ — (extend-valctx I') v (extend-ty o)

In this dissertation, we consider an extension of a slightly different version of the effect

theories of Plotkin and Pretnar. More precisely, we work with effect signatures consisting

of effect variables w : [] and operations op : 3;n. Recall from Definition 4.1.3 that n

corresponds to the list ay, ..., o, of lists of argument arity types where all «; are empty.

However, we conjecture that the proof of the conservativity theorem will also hold in the

more general situation. We leave this as a future work and summarize the subtleties in
Section 7.1.

Definition 4.3.2 (Extension of effect theories).

op-algebraicity

Given an FGCBV 4 type o, every effect variable w : [| defines an FGCBV g variable

z:1—o0.

Given an FGCBV g type o, every operation symbol op : 3;n defines a typing rule

of producer terms.

FEypr B Thppn i By 'y My:io .. T'H, M, :0
o
P T by oDy (1, pm); (My, . M,)) < 0

Every equation I'; A Fg t; = ty between well-typed effect terms defines a corres-

ponding equation between well-typed producer terms.

We add the following algebraicity equation for each operation to relate operations

at different types.

', p:B 'y My:o ... I'HpM,:0o Fx:ob, N:T
I' F, op,(p; M, ..., M,)tox.N = op,(p; Mitox.N, ... M,tox.N) : 7

27



Intuitively, the producer term op,((p1, ..., pm); (Miy...M,;)) now denotes a computation
that causes the effect determined by op with parameters py, ..., p,, and then continues as

one of the computations denoted by producer terms M, ..., M,,.

This gives rise to a straightforward formalization in Agda. First, we define the effect
contexts as lists of empty lists (denoted with the canonical element of the singleton set
Unit)

EffCtx : Set
EffCtx = List Unit

together with corresponding de Bruijn indices

data_<”_ : Unit — EffCtx — Set where
Hd : {A : EffCtx} {w : Unit} > w €” (A 1 w)
T {AEffCix} {ww :Unit} = we” A —-we” (Aw)

both inducing extensions

extend-effctx : Ty — EffCtx — Ctx
extend-effvar : {I" : ValCtx}{A : EffCtx} {w : Unit} {o : Ty} - w e&” A

— (One — o) € (extend-valctx I') @ (extend-effctx o A)
where @ is the concatenation of two contexts (i.e., lists).

Finally, we define effect terms as an inductive data type illustrated with one binary

operation parametrized over a parameter of base type f.

data_, HE (I" : ValCtx) (A : EffCtx) : Set where
var:{n:Unit} > (w:n€”A)-T,AFE
op:'F8—-T,ArtEc—-T,AFEc—>T,A}rEc

together with a corresponding FGCBYV producer term

data_Fp_(I': Ctx) : Ty — Set where

op:{fo:Ty}=>T'rvB—=Ttpo—Ttpo—Ttpo
and an extension map

extend-eff : {I" : ValCtx} {A : EffCtx} — (o0 : Ty) = T, AFE
— (extend-valctx I') @ (extend-effctx o A) Fp o

where effect variables are extended by using application app (var (extend-effvar w)) x.

To conclude this section, we show how the equations in value and effect theories can be

defined in Agda as inductive data types.
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data_F = :(I':ValCtx) —» {o : BaseTy} - I'+ 0 — I' - ¢ — Set where

=-refl : {I' : ValCix} {o : BaseTy} {t : I'Fo} > T Ft=t

=-symm : {[' : ValCtx} {o : BaseTy} {tu: I'Fo} > T'Ft=u—->TFu=t

=-trans : {I" : ValCtx} {0 : BaseTy} {tuv:I'Fo} >T'Ft=u—->Tru=v—>TFt=v
congf: {I': ValCtx} {o : BaseTy} {tuvw:I'o} > T'Ft=u—-TFv=w—>TFftu=fvw

data_, FE = :(I':ValCtx) — (A : EffCtx) - T', AFE — T, AFE — Set where
=-refl : {I" : ValCix} {A 1 EffCix} {t : ', AFE} - ', AFEt =t
=-symm : {[' : ValCtx} {A : EffCtx} {tu:T', AFE} - T, A+Et=u—T,AFEu=t
=-trans : {I" : ValCtx} {A : EffCix} {tuv: T, AFE} - T, AFEt=u
—T,ArFEu=v—T ,AFEt=vVv
congif : {I" : ValCtx} {A : EffCtx} {o b’ : ' Bool} {tut v :T',AFE} - T'Fb=b’
—-T,ArEt=t ->T',ArEu=u —1,AFEifbthentelseu=ifb thent else v’

These data types need to be extended with equations of specific value and effect theories.
Every equation I' -t = u defines an equation (extend-valctx I') -v (extend-val t) = (extend-val u)
between value terms. In addition, given an FGCBV .4 type o, every equation I', AFEt=u
defines an equation (extend-valctx I') @ (extend-effctx o A) p (extend-eff o t) = (extend-eff o u)
between producer terms. For example, in case of non-determinism, we add the following

three equations together with a straightforward congruence equation for or.

or-idempotency : {I" : ValCtx} {A : EffCtx} {t: ', AFE} - T, AFEortt=t
or-commutativity : {I" : ValCtx} {A : EffCix} {tu: ', AFE} - ', AFEortu=orut
or-associativity : {I" : ValCtx} {A : EffCtx} {tuv:T',AFE} - T', AFEor(ortu)v=ort(oruv)

4.3.1 Extension of example effect theories

We now show how the three example theories of non-determinism, deterministic choice
and global store from Section 4.1.1 can be extended to FGCBV .

Non-determinism
We extend FGCBV ¢ with a binary producer term

', My:o ', My:o
Fl—p OI'J(Ml,MQ) e

together with the algebraicity equation
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'y My:o 'y My:o Fwx:ob, N7
I'F, or, (M, My)tox.N = or (M, tox. N, Mytox.N) : 7

or algebraicity

and the equations of the theory of semilattices.

', M:o
I'kFyor,(M,M)=M :0

or idempotency

'y My:o 'y My:o
I'k, or,(My, My) = or, (M, My) : o

or commutativity

'y My:o 'y My:o Tk, Ms:o
I' b, or,(or, (M, My), Ms) = or, (M, or, (M, Ms)) : o

or associativity

Deterministic choice

We define a new base type bool denoting booleans together with two value terms denoting

true and false.

I' -, true : bool I' -, false : bool

We extend FGCBV,¢ with a binary producer term parametrized over boolean values of

type bool

'y B:bool I', My:0 TI'k, My:o
I't, if, Bthen M, else M, : o

together with the straightforward algebraicity equation and three equations making the

behavior of deterministic choice explicit.

'y My:o 'y My:o
I' -, if , truethen M, else My = M, : o

if true

'y My:o 'y My:o
I' -, if, falsethen M, else My = M, : o

if false

'+, B : bool
I' F, if, Bthen (return true) else (return false) = (return B) : bool

if booleans
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Global store

We define two new base types loc and data denoting a set of memory locations and a
set of possible data values. For example, if we would be working with a single one-bit
memory cell, we would add the following three value terms to describe the single cell and

two possible data values.

I'+,cell:loc I'k,zero:data I+, one:data

To support reading from and writing to the locations loc, we define the following two

producer terms

'y L:loc 'k, My:0 ... T'H, M,:0
I'F, read, (L; My, ..., M,) : o

', L:loc I'k, Vidat I'H, M :0o
I' b, write, (L,V; M) : o

where n is the number of possible data values. In addition, we add the equations given
by Plotkin and Power [36].

4.4 Semantics of the extended intermediate language

We conclude the extension of value and effect theories by discussing the semantics of
FGCBV.g which is based on the semantics of FGCBYV given in Section 3.7 and the models
of value and effect theories given in Section 4.2. Therefore, the model of FGCBV.g is
a monad model with the additional restriction that it also has to be a model of the

corresponding value and effect theories Ty = (Xya1, Eval) and Teg = (Zegr, Fotr)-

The assumption about being a model of a value theory allows us to extend the inter-
pretation of FGCBV with the interpretation of value terms corresponding to function

symbols.

[, Va)lve = [iI(ilve, - [Valve)

The assumption about being a model of an effect theory allows us to extend the interpret-

ation of FGCBV with the interpretation of producer terms corresponding to operations.

lops((P1s vy Pm); (M, ooy Mag), ooy (M1, ooy Myt ]p € =
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oprpop(([prlves s [Pmlve), (IMuidpes oo [Marlpe), oo ([Mra]lpe, -, [Muilpe))

4.5 Question of conservativity

Having defined the extension of value and effect theories, the natural question is whether
this extension is conservative. More precisely, a theory T is said to be a conservative ex-
tension of Ty if every theorem of T} is a theorem of Ty and every theorem of Ty, expressible
in Ty, is also a theorem of T;. When we consider the equational theory of FGCBV 4 as
T, and the value and effect theories as Ty, we get the following correspondence. Namely,
two value or effect terms are provably equal in the value or effect theory if and only if they
are provably equal in FGCBV,¢. The intuition is that the extension must not restrict any
behavior determined by value and effect theories (= direction) while not introducing

any new unexpected behavior not determined by value and effect theories (<= direction).

It turns out that the = direction is relatively straightforward as we show in Chapter
6. On the other hand, we discovered that before proving the <= direction in Chapter 6,
one first needs to be able to effectively decide provable equality in FGCBV, g. For this
reason, we spend the whole of Chapter 5 on developing an NBE algorithm for computing
inductively defined normal forms. The comparison of these normal forms then gives us

the desired method to decide provable modulo to the given value and effect theories.

It is worthwhile to note that the strong normalization of FGCBV,g can also be proved by
applying the reduction-based method advocated by Girard [16] and also following Lindley
and Stark [22] in defining suitable notions of reducibility and continuations for FGCBV
terms. However, we discovered that NBE is more suited for our work and, due to space

restrictions, we omit the reduction-based normalization results from this dissertation.
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Chapter 5

Normalization by evaluation

Motivated by the question of conservativity of the extension of value and effect theories to
the intermediate language, we spend this chapter on developing a normalization algorithm
which is used in Chapter 6 for answering this question. The main technique we use is
a semantic notion of normalization, called normalization by evaluation (NBE), discussed
briefly in Section 2.3. However, we present and formalize a more general algorithm than
the usual presentations of NBE. In particular, we do not normalize the value and effect
theories and, therefore, compute normal forms modulo the given value and effect theories

rather than up to equality.

We begin by inductively defining normal and atomic forms together with a suitable equa-
tional theory. Next, we define a suitable denotational semantics together with an NBE

algorithm. Finally, we use Kripke logical relations to prove this algorithm correct.

5.1 Normal and atomic forms

We begin with the inductive definition of normal and atomic forms for FGCBV .

Definition 5.1.1. Normal and atomic forms are given by typing judgments I' -, V : o
(normal values), I' F,,, V' : ¢ (normal producers), I F,,, V' : o (atomic values), I' F,, V : o

(atomic producers) with well-typed terms given by the following mutually defined rules.
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varAV

. / .
z:ol'Fpx:0

FI_(M,VZO./ Fkavv 6
avNV m bavNV T l_nv V B
itNV irNV r I_n'u ‘/1 01 r I_n'u ‘/2 - 02
unt T Fpyx: 1 pair T Fop (Vi, Va) : 01 X 09
' VicBr .. Tk VB, _ I'Fp Vo X 09
funhV T (Vs Vi) - B ProjiAv T Fo m(V) : 0
ke Vieo—=7 TH,W:0o Dok, N7
appAP I VIV i 1 lamNV ' Mz:0oN:o—T1
I'HL,V:io by M:o Dixioby,, N7
returnNP 'ty returnV : o toNP 'y Mtox. N : 7
' pr i B Ty pnt Ba Dby Miyyio . Ty My o
opNP

r |_np Opg((]h, 7pm>7 (M117 ceey Mlk)a cet (Mnb ceey Mnl)) e

These normal forms are reminiscent of the n-long S-normal forms of simply typed lambda
calculus with the atomic forms denoting terms that cannot be normalized further. The
separate definition of atomic producers is actually redundant as it is possible to give a
straightforward derived typing rule for the normal form of to. However, we feel that the

current definition gives a more intuitive and symmetrical presentation.

Similarly to value and producer terms in Section 3.3, these typing rules give rise to
straightforward inductive data types in Agda where the constructors correspond to the

labeled typing rules above.

data_Fnv_ (I' : Ctx) : Ty — Set where
avNV:T'tava — T'nv
bavNV :T'Fav g — T knv 8
unitNV : I" Fnv One
pairNV : {o1 02 : Ty} = T'Fnvo; - Tknvos - TFnvo; A oo
lamNV :{o7: Ty} - (L zo)Fknpr = TtFnve — 7
funNV:T'Fnv g - TFknv g > Tknv g
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data_Fnp_ (I": Ctx) : Ty — Set where
returnNP : {o : Ty} - T'Fnvo - T Fnpo
toNP:{oc7:Ty} > T Fapo - T o)Fnpr —=TtFnpr
opNP : {o: Ty} > T Fnv3 —-Ttnpo —-TFnpo—Ttknpo

data_Fav_ (I' : Ctx) : Ty — Set where
varAV :{c : Ty} o€l T taveo
proj1AV :{o1 02 : Ty} = T'Favo; Aoy — T'tav oy

projAV : {o1 o2 : Ty} = T'Favo; Aog — T'lav o,

data_Fap_ (I : Ctx) : Ty — Set where
appAP:{o7:Ty} »T'tave -7 —=Ttnvo - Ttapr

For presentation purposes, and to follow Section 4.3, we let funNV range over binary

function symbols and opNP range over binary operations with one parameter.

Similarly to Section 3.4, it is possible to give an algebraic account of normal and atomic
forms. This time we consider the initial algebra for a signature endofunctor
(Fpy, Frp, Fuay, Fop) on (Set®™)TY x (Set®™ )Ty x (Set®™)Ty x (Set®™)TY. We omit
the components here as they can be easily recovered from the families of presheaves de-

scribing the initial algebra, i.e.,

e NVTerms,(I') = {t|t € ([ Fnv o)}, (normal values)
e NPTerms,(I') = {t|t € (T Fnp o)}, (normal producers)
e AVTerms,(I') = {t|t € (['tav o)}, (atomic values)
e APTerms,(I') = {t|t € (I' Fap o)}. (atomic producers)

that again have straightforward definitions in Agda.

It is also easy to see that every normal and atomic form defines a corresponding FGCBV ¢
value or a producer term with corresponding structure. In particular, there exist the

following families of embeddings

NVTerms,, NPTerms,
VTerms, PTerms,
AVTerms, APTerms,,

which are defined as families of maps between presheaves.
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Fnv-embed : {0 : Ty} — Set"Ctx-Map (NVTerms o) (VTerms o)
Ty} — Set"Ctx-Map (AVTerms o) (VTerms o)
Ty} — Set"Ctx-Map (NPTerms o) (PTerms o)

Fav-embed : {o
: } (
Ty} — Set"Ctx-Map (APTerms o) (PTerms o)

Fnp-embed

g

{
Fap-embed : {o

Finally, we can also formalize an extension of value and effect theories to normal forms.
This extension is similar to Section 4.3. In short, every function symbol in a value theory
defines a corresponding normal value and every operation in an effect theory defines a
corresponding normal producer for a given type. This canonical structure also induces

two extension maps

extend-val-nv : {I" : ValCtx}{c : BaseTy} — I' - o — (extend-valctx I') Fnv (extend-ty o)
extend-eff-np : {I" : ValCtxH{A : EffCtx} — (o0 : Ty) - ', AFE
— (extend-valctx I') @ (extend-effctx o A) Fnp o

where effect variables are extended using the NBE algorithm we define in this chapter,

i.e., as nf-p (app (var (extend-effvar w)) x).

5.2 Equational theories of normal and atomic forms

In usual presentations of NBE, normal and atomic forms are identified up to equality.
However, as we do not aim to normalize the value and effect theories, need to define a
more general equivalence between them by equipping both normal and atomic forms with

suitable equational theories.
We begin by identifying atomic values up to the heterogeneous equality.

fav= :(I':Cix) > {o:Ty} > 'tave — I' Fav o — Set

TFavt=u=t=u

We define the equational theories of normal values, normal producers and atomic produ-
cers as three mutually defined sets of equations similarly to FGCBV g equational theory
in Section 3.6. These equations identify normal values, normal producers and atomic
producers up to equivalence relations that are compatible with all the term constructors.
In Agda, we again present these sets of equations as inductive data types. For example,

below is the data type for normal values.

data tnv = :(I':Ctx) > {o: Ty} > '+nvo — I' Fnv o — Set where
=-refl: {I :Ctx}{o:Ty}{t: TFnvo} =T kFnvt=t

=-sym: {I':Ctx} {o: Ty} {tu:T'Fnvo} > T Fknvt=u—TFnvu=t

=trans : {I': Cix} {o : Ty} {tuv:T'Fnve} T Fnvt=u—-TFnvu=v—-TFnvt=v
congav:{I":Cix} {tu:T'tava} > T'Favt=u—TFnvavNVt=avNVu
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congbav : {I': Cix} {tu:I'Fav 5} - I'avt =u — I' Fnv bavNV t = bavNV u
congpair :{I' : Ctx} {o1 o2 : Ty} {tt : T Fnvo}{uu :T'kFnvos} - T HFvti=t - TkFnvu=u
— I'Fnv pairNV t u = pairNV t' v’
conglam :{I' : Ctx} {o 7 : Ty} {tu: T :o)Fnp 7} = (' :o) Fnpt=u — T FnviamNV t = lamNV u
congfun:{I':Ctx} {ttuu :TkFnv g} > Tknvt=t > TFnvu=u - T Fnvftu=ft'u

In addition, the sets of equations for normal values and normal producers are extended
with equations from specific value and effect theories. Similarly to Section 4.3, every
equation I' -t = u defines an equation (extend-valctx I') Fnv (extend-val-nv t) = (extend-val-nv
u) between normal values. In addition, given an FGCBV ¢ type o, every equation I', AFE t
= u defines an equation (extend-valctx I') @ (extend-effctx o A) F-np (extend-eff-np o t) = (extend-
eff-np o u) between normal producers. For example, for the theory of non-determinism we
add the following three equations together with a straightforward congruence equation

for or.

or-idempotency : {I' : Ctx} {o : Ty} {t:'Fnpo} - T Fnportt=t
or-commutativity : {I' : Ctx} {o : Ty} {tu:T'Fnpo} - T'Fnportu=orut
or-associativity : {I' : Cix} {o : Ty} {tuv:T'Fnpo} - T Fnpor(ortu)v=ort(oruv)

5.3 Denotational semantics

In this section, we define a suitable denotational semantics for FGCBV ¢ needed for our
NBE algorithm. We will give a residualizing interpretation into a suitable and rather in-
tensional monad model. By residualizing (notion borrowed from Filinski [13]) we mean an
interpretation that preserves enough syntactic structure of FGCBV.g terms to construct

the inverse map. For example, let us consider the following two terms.
() TFap A(9) . (F) t02.(g%) : (1 = ) x (1= a)
(i1) T Fup A(f.9) . (99) tom.(f) : (1 = a) x (1= a)

Both (i) and (ii) contain two atomic producers (fx) and (gx). As f and g are variables,
we have no further information which effects (f*) and (gx) might produce. Therefore, the
normal forms of (i) and (ii) must be different and this needs to be made explicit in the

denotational semantics.

5.3.1 Free monad

We now construct a free monad on the signature endofunctor F;,, we discussed in Section

5.1. This construction gives us the intensional monad model suitable for preserving enough
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structure of atomic producers and operations to invert the interpretation. Later, in Section
5.5, we show how this free monad also forms a quotient monad satisfying the given effect

theory.

We present the free monad as a Kleisli triple (7,7, *). The object map T is defined as

an inductive data type to emphasize the monad’s tree-like nature

data T (X : Ctx — Set) : Ctx — Set where
T-return : {I": Ctx} - XI' = TXT
Tto:{I':Cix}{o: Ty} > T'tapo - TX (T :0) > TXT
Top:{l':Citx} > TFnwg3 > TXI > TXT' > TXT

together with the action of renaming on it.

T-rename : {X : Set"Ctx} {[ I": Ctx} = (f:RenT'I") - T (set X) ' = T (set X) I’

T-rename {X} f (T-return x) = T-return ((Set"Ctx.act X) f x)

T-rename {X} f (T-to x y) = T-to (-ap-rename f x) (T-rename (wk; f) y)

T-rename {X} f (T-op p x y) = T-op (Fnv-rename f p) (T-rename f x) (T-rename f y)

The intuition behind this free monad is that it defines a semantic computation tree where

the nodes are denoted with T-to’s and T-op’s and the leafs with T-return’s.

Proposition 5.3.1. Given a presheaf X : Set"Ctx, the object map T and the action of

renaming T-rename define a new presheaf T-Set"Ctx X. [

The unit and the Kleisli extension can now be defined as maps between presheaves.

n : {X : Set"Ctx} — Set"C-Map X (T-Set"Ctx X)
n X = T-return X

_* XY : Set"Ctx} — (Set"C-Map X (T-Set"Ctx Y)) — Set"C-Map (T-Set"Ctx X) (T-Set"Ctx Y)

f* (T-return x) = f x

" (T-tot x) = T-to t (f* x)

f* (T-op p xy) =T-op p (f* x) (f'y)
To complete the definition of our monad model, we have to define both the strength
and Kleisli exponentials for T. In Agda, we write t-r for the strength and _=_ for the
components of Kleisli exponentials with ey y given by Agda function application. The

strength of T is defined as a map between presheaves
t-r : {X'Y : Set"Ctx} — Set"C-Map (X ® (T-Set"Ctx Y)) (T-Set"Ctx (X ® Y))
t-r (x , T-returny) = T-return (x, y)
tr(x, T-toty) = T-to t (t-r ((act X wky x) , y))
tr(x, T-oppyz)=T-opp (tr(x,y)) (tr(x,2z)
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while the components of Kleisli exponentials between presheaves X, Y : Set"Ctx are defined

as Agda function spaces

_= (XY :Ctx — Set) — Ctx — Set
X=Y)I={I":Ctx} = RenI'I" > X" > TYD

together with the corresponding action of renaming.

=-rename : {XY :Set"Ctx} {I' " : Cix} —» (f: Ren ' I") — ((set X) = (set Y)) ' — ((set X) = (set Y)) I’

=--rename f x g = x (comp-ren g f)

5.3.2 Residualizing interpetation

Following the definition given in Section 3.7, we now define the residualizing interpretation

Ctx

into our monad model on Set™"™. First, we define the residualizing interpretation [_] of

FGCBV.g4 types in Set®®™ given by the components

[L]:Ty — Ctx — Set
[a]T=TFnva
[B]T=TFnvp
[One] I = Unit
[o1No2]T=[0o1]T x[o2]T
[o=7]T=(c]l=[7DT

together with the action of renaming on them.
[J-rename : {o : Ty}{T'T":Ctx} = RenI'I" - [o [T = [o]T"
[J-rename {a} f t = Fnv-rename f t
[J-rename {3} f t = -nv-rename f t

{

{
[]-rename {One} f t = x
[J-rename {o1 A o2} f p = [J-rename f (fst p) , []-rename f (snd p)
{

[J-rename {oc — 7} fh=Agd—h(g-f)d

Definition 5.3.2. We write Denot o for the presheaves given by [ ¢ | and []-rename. In

addition, we write T-Denot o for the presheaves given by T-Set"Ctx (Denot o).

This interpretation of types illustrates how syntactic structure is stored in the semantics
by interpreting base types as presheaves of normal values of base type. This extends the
ideas in the previous section where we used the free monad to store syntactic structure

of producer terms.

Next, we extend the interpretation of types to the interpretation of contexts. We do this

by defining a notion of environments that map de Bruijn indices to semantic values
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Env : Ctx — Ctx — Set
EnvwvlIl'={c:Ty} 50l = [o]I"

together with the action of renaming on them

env-rename {L' T"T”:Ctx} - RenI"T” - EnvI' [’ - Env I I

env-rename f e x = []-rename f (e x)

These environments correspond to the interpretation of contexts [I' ] we discussed in Sec-
tion 3.7. We decided to model the environments using two contexts to keep the present-
ation as symmetric as possible with the definition of parallel substitutions. Furthermore,

environments can also be described by presheaves.

Definition 5.3.3. We write Env-Denot I" for the presheaves given by Env I and env-rename.

Similarly to substitutions, one often needs to extend environments with new semantic
values to interpret terms with free variables. This extension operation is defined, similarly
to the extension of substitutions, by mapping a given semantic value to a new outermost

variable in the given context.

env-extend : {T' T":Ctx} {o : Ty} = EnvI " - [o ] I" = Env ([ :0) "
env-extend e d Hd = d

env-extend e d (Tl x) = e x

Finally, we define the residualizing interpretation of FGCBV ¢ value and producer terms
in Set®™ by following the interpretation in Section 3.7. The two interpretation maps

now take both value and producer terms to morphisms in Set€**.

[_]v :{T : Ctx} {o : Ty} = T kv o — Set"Ctx-Map (Env-Denot I') (Denot o)
[LJp:{T" :Ctx}{o : Ty} = I Fp 0 — Set*Ctx-Map (Env-Denot I') (Denot-T o)

These maps are defined by straightforward structural recursion on value and producer

terms.

[varx]ve=ex

[proji t]ve="fst([t]ve)

[projzt]Jve=snd([t]ve)

[pairtuve=[t]ve,[u]ve

[*x]ve=x

[lamt]Jve=Afu— [t]p (env-extend (env-rename f e) u)
[ftulve=fNV([t]ve)([u]ve)

[returnt]pe=n([t]ve)

[ttou]pe=(Av—[u]p (env-extend (fstv) (snd v)))* (t-r (e, [t]p €))
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[apptulpe=([t]ve)id([u]ve)
[opptupe=T-op([plve)([t]pe)([u]pe)

5.4 The normalization algorithm

Before we are able to define our normalization algorithm, we first need to invert the
interpretation maps given in the previous section. This is done by defining the following

families of maps between presheaves.
First, we define two families of reification maps (one for values and one for producers)

reify-v : {o : Ty} — Set*Ctx-Map (Denot o) (NVTerms o)
reify-p : {o : Ty} — Set*Ctx-Map (T-Denot o) (NPTerms o)

from semantic values to normal forms. We define these maps by structural recursion on
types and the monad structure such that they extract the normal forms directly from the

denotational semantics.

reify-v {a} d =d

reify-v {5} d=d

reify-v {One} d = unitNV

reify-v {o1 A o2} d = pairNV (reify-v (fst d)) (reify-v (snd d))
reify-v {o — 7} d = lamNV (reify-p (d wk; (reflect-v (varAV Hd))))
reify-p (T-return d) = returnNP (reify-v d)

reify-p (T-to t d) = toNP t (reify-p d)

reify-p (T-op p d d’) = opNP p (reify-p d) (reify-p d’)

reify-v gives us n-expanded [-normal forms according to the following intuition.

e We identify semantic and normal values of base type to extract their syntactic struc-

ture from the semantics.

e For semantic values of unit type, reification just returns the unique normal form of

unit type.

e Semantic values of product type are expanded into syntactic pairs of reified compon-

ents of these semantic values.

e Semantic values of function type are reified as normal lambda abstractions using
reify-p to reify the application under the lambda abstraction. Notice that we also
have to use reflect-v when reifying the application. The reason is that the normal
lambda abstraction introduces syntactic variables that need to be reflected into the

semantics before reifying the semantic application.
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On the other hand, reify-p takes us from the free monad structure to the normal

producers by unrolling the tree-like structure in a straightforward way.

Next, we define two families of reflection maps (one for values and one for producers)

reflect-v : {o : Ty} — Set*Ctx-Map (AVTerms o) (Denot o)

reflect-p : {o : Ty} — Set*Ctx-Map (APTerms o) (T-Denot o)

going in the other direction from atomic forms to semantic values. We define these maps

by structural recursion on types

reflect-v {a} t = avNV t

}
B}t = bavNV t

reflect-v {One} t = x

{
reflect-v {
{
{

reflect-v {o1 A o5} t = reflect-v (proj; AV t) , reflect-v (proj2 AV t)

reflect-v {c — 7} t= A fv — reflect-p (appAP (-av-rename f t) (reify-v v))

reflect-p t = T-to t (T-return (reflect-v (varAV Hd)))

such that they enable us to preserve enough syntactic structure of atomic forms in the

semantics with the following intuition.

Atomic values of base types are reflected as normal values of base types to explicitly

mark where the variables (or projections of them) appeared in the syntax.
Atomic values of unit type are reflected as the unique semantic value of unit type.

Atomic values of product type are reflected as pairs of semantic values whose com-

ponents are reflections of projections of these atomic values.

Atomic values of function type are reflected as Kleisli exponentials. However, we first
need to reify the semantic value given by the Kleisli exponential before reflecting

the syntactic application.

On the other hand, reflect-p preserves the atomic producers as instances of the free

monad structure, i.e., T-to.

We can extend the family of reflection maps for atomic values to the reflection of contexts

by reflecting every variable in a given context. We call this construction the identity

environment to emphasize its intensional nature in representing syntactic variables in the

semantics. These identity environments have a straightforward definition in Agda

id-env : {I' : Ctx} - EnvD' T’

id-env x = reflect-v (varAV x)

together with the following proposition showing how interpretations using identity envir-

onments respect normal and atomic forms.
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Proposition 5.4.1. Given an identity environment, the reification map inverts the in-

terpretation of normal forms

(i) Vt € (I'Fnv o) . reify-v ([ Fnv-embed t v id-env) = t

(ii) Vt € (L Fnp o) . reify-p ([ Fnp-embed t Jp id-env) =
and the reflection of atomic terms is equal to their interpretation.
(iii) Vt € (I'tavo) . [tav-embedt v id-env = reflect-v t

(iv) Vt € (T'tap o) . [ ap-embed t ]p id-env = reflect-v t ]

We outlined in Section 2.3 that the NBE algorithm can now be given by a straightforward

composition of the interpretation and reification maps.

nf-v : {o : Ty} — Set"Ctx-Map (VTerms o) (NVTerms o)
nf-v t = reify-v ([ t Jv id-env)

nf-p : {o : Ty} — Set*Ctx-Map (PTerms o) (NPTerms o)
nf-p t = reify-p ([ t Jp id-env)

We will now spend the rest of this chapter on proving that this normalization algorithm
is correct and satisfies the conditions outlined in Section 2.3. All the results we present

can be found in full detail in our Agda formalization [1].

5.5 Kripke logical relations

Before proving the correctness of the NBE algorithm, it is necessary to formally relate
the syntax of FGCBV.¢ and the monad model we have defined. In particular, we use the
notion of Kripke logical relations to define suitable relations between FGCBV ¢ terms and
semantic values. These logical relations were pioneered by Plotkin [34, 35| to characterize
definable elements in the models of simply typed lambda calculi. Later, Jung and Tiuryn
[19] generalized the Kripke logical relations from fixed arities to varying arities. This has
been used by Fiore [14] to analyze NBE. However, in our work, it is sufficient to use binary

Kripke logical relations as defined below.

Definition 5.5.1. A world structure (W, <) consists of a collection of worlds W and an

alternativeness relation (a preorder) < between worlds.

It is worthwhile to notice that in our work, the world structure is given by the category

of contexts. More precisely, we consider contexts as worlds and the injective renamings
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as the relations between them. Using this observation, it is straightforward to define a

suitable notion of Kripke relations between presheaves in Set®™.

Definition 5.5.2. Given X,Y € Set®™ a binary Kripke logical relation ~ is given on
the components of X and Y by

® ~rp & XF X YF
satisfying a monotonicity condition.

e Vfe (RenI'T") . x ~pr y = actfx ~p actfy

Next, we relate the term model given by the initial algebra for the signature endofunctor
(F,, F,) in Section 3.4 with our monad model.
Definition 5.5.3. The Kripke logical relations
o ~i7 e Tkvo) x ([o]T)
e~ € (Lkpo) X (T[o]T)
relate value terms with semantic values of same type
o t~i®d <= Thvt=Fnv-embedd
o t ~1i0ne g i5 always true
o t ~1i91M92 g 5 (proj; t) ~Li9 (fstd) && (proja t) ~1391 (snd d)

o t~liT"Tde= Ve (RenT "), uc ("vo), d € ([o]T) . u~liod =
= (app (Fv-rename f1) u)) ~,7 (d fd)

and producer terms with the corresponding free monad structure.

7 (Tretund) <= Jue (TFvo) . Thpt=returnu && u~,7 d

et~ (Toppdd) <= Juve (I'kpo). ['Fpt=or(-nv-embedp)uv &&
o N]_—‘;o' ’
un~, d&&v » d
The intuition behind this definition can be summarized as follows.

e A value term of base type is related to a semantic value of base type (i.e., a normal

form of base type) if and only if they are provably equal as value terms.

e A value term of unit type is always related to the unique semantic value of unit

type.
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e A value term of product type is related to a semantic value of product type if and

only if both projections are related.

e A value term of function type is related to a semantic value of function type if and
only if, given related value term and semantic value in some future context, the

applications are related in this future context.

e The relations relating producer terms with the free monad structure follow a common
pattern. That is, a producer term is related to the monad if and only if the term is
provably equal to a producer term corresponding to the free monad structure (e.g.,

opptuand T-oppdd) and the relations hold for the corresponding substructures.

o

Proposition 5.5.4 (Monotonicity of ~? and ~ 7). The relations ~;, o

and Ng’ are

monotone under renamings.
(i) Vte Tkvo),de([o]T),f€ (RenTT’) . t~i9d =
(Fv-rename f t) ~L":7 ([]-rename f d)
(i) Vte Ctpo),de(T[o]D),f€ (RenTT) . t~7d =
(Fp-rename f 1) ~L"7 (T-rename f d)

Proof. We prove this result by simultaneous structural induction on (i) types and (ii) the

free monad structure.

e The base cases for base types are proved by using the naturality of Fnv-embed and

the monotonicity of T' vt = u under renamings.

e The inductive cases for unit and product types are proved by straightforward ap-

plication of induction hypotheses.
e The inductive case for function types is proved by using (ii).
e The base case for T-return is proved by using (i).

e The inductive cases for T-to and T-op are proved by using the naturality of Fnp-embed

and the monotonicity of I' Fpt = u under renamings.
O

In addition to satisfying the monotonicity condition, these relations exhibit another inter-
esting invariance property. More precisely, the terms in the same equivalence class of the
term model, given by the equational theories I' vt =u and T' Fp t = u, should be related
to the same semantic values. This result will be important for showing that terms are

provably equal to their normal forms.

o

Proposition 5.5.5 (Invariance under provable equality). The relations ~; v

T
and ~p

are tnvariant under provable equality.
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(i) Vtue (Thvo),de ([o]D) . t~i"d8& Thvt=u= u~Li"d

(i) Vtue (Ctpo),d € (T[o]D) .t~ 7d&& kpt=u = u~°d

Proof. We prove these results by simultaneous structural induction on (i) types and (ii)

the free monad structure.

e The base cases for base types are proved by using the provable equality of value

terms and the definition of ~I37 for base types.
e The base case for T-return is proved by using (i).

e The inductive cases are proved by straightforward application of induction hypo-

theses with the function type case using (ii). O

It is straightforward to extend these Kripke logical relations to interpretations into the
term model and the monad model given respectively by the action of parallel substitution

and the residualizing interpretation.

Definition 5.5.6. Substitutions and environments are related by a Kripke logical relation
o ~IT € (SubTI") x (EnvI IV
if and only if they are related at each single variable.

es~lilMee=Vxec(gel). (sx)~ (ex)

It is straightforward to verify that, due to Proposition 5.5.4, ~I'I" is also monotone under

o o
v

renamings. However, it is more interesting to investigate whether ~,? and ~ 7 are

compatible with the reification and reflection maps.

e

I'so I
» 7 and ~,

Proposition 5.5.7 (Compatibility). ~ are compatible with the reification

and reflection maps.
(i) Vte (M'Favo) . (Fav-embedt) ~1i7 (reflect-v t)
(i) Yt e (F'tap o) . (Fap-embedt) ~,7 (reflect-p t)
(ili) Vte TFvo),d € ([o]T) . t~1i9d = I' kvt = (Fnv-embed (reify-v d))
(iv) Vte (Crpo),d e (T[o]T) . t Ng?" d = I' Fp t = (Fnp-embed (reify-p d))
Proof. We prove these results by simultaneous structural induction on (i,iii) types and
(ii,iv) the free monad structure.

e The base cases in (i) for base types are proved by using the definition of reflect-v.

e The base case in (ii) for T-return is proved by using (i).
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e The base cases in (iii) for base types are proved by applying the given relation.
e The base case in (iv) for T-return is proved by using (iii).
e The inductive cases are proved by straightforward application of induction hypo-

theses. []

Corollary 5.5.8 (Identity substitutions and environments). It follows from Proposition
5.5.7 (i) that the identity substitutions id-subst and identity environments id-env are related
by ~Li, ]

We conclude this section by presenting the fundamental lemma of logical relations that

will be used in Section 5.7 for proving the normalization results.
Theorem 5.5.9 (Fundamental lemma of logical relations). Interpretations of value and
producer terms using related environments are related.

(i) Vte THvo),s € (SUbTTI), e € (EvIT). s~ e =
(subst-vst) ~L57 ([t]ve)

(i) Vte TFpo),s € (SubT'T"), e € EnvIT) . s~lil" e =
(subst-pst) ~L 7 ([t]pe)

Proof. We prove (i) and (ii) by straightforward structural induction on value and producer

terms.

e The base case in (i) for variables is proved by using the given relation between

substitutions and environments.
e The base case in (ii) for return is proved by using (i).

e The inductive cases are proved by straightforward application of induction hypo-

theses.

e The only non-trivial case concerns the sequenced producers tto u which is proved by
using Proposition 5.5.10. O]
Proposition 5.5.10. The logical relation Ng?" relates sequenced producers with the

composition of Kleisli extensions and monad strength.

(i) Vte THpo),ue (Czo)kpr),de (T[o]TI), s € (Sub' T,
e€ EwIT) . t~"d&&s~'"e =
(t to subst-p (lift s) u) NIF,'?" (Av = [u]p (env-extend (fst v) (snd v)))* (t-r (e , d))

Proof. We prove this proposition by structural induction on d simultaneously with proving
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the fundamental lemmas in Theorem 5.5.9. The proof also uses the invariance results from

Proposition 5.5.5 for T-return and T-to. [

5.6 Soundness of the residualizing interpretation

In this section, we prove that the residualizing interpretation is sound. However, it is
important to note that we consider a more general notion of soundness than the usual
presentations of NBE. More precisely, we do not consider soundness up to equality but
instead up to suitable Kripke logical relations we define below. This is necessary for
showing that the normal forms returned by our normalization algorithm are equivalent
modulo the given value and effect theories. However, we also show that the residualizing
interpretation is sound up to equality if there are no equations in the value and effect

theories.
We now define two partial equivalence relations on semantic values and the free monad
structure showing that they are form Kripke logical relations.
Definition 5.6.1. We turn the free monad into a quotient monad by equipping it with a
partial equivalence relation

o ~7 € (T[] D) x (T[o]D)
generated by the following rules.

o (sym)¥dd €(T[o]T). dmy” d = d =57 d

trans) V d,d’,d” (= (T o I‘) . d %DU d && d %F;Cf d — d %F;U q’
T T T

(cong return) Vd,d' € ([oJT) . d &7 & = (T-return d) %gi" (T-return d’)

, .. _ PR B e
(cong to) Vtue (Ctap7),dd € (T[o](C=7). TFapt=u&&d~;"7d
— (Ttotd) A7 (Tto u d)

(cong op) ¥V d,d,d"d” € (T[o]T),pp € ([B]T). d=r7 o && d” =57 d” &&

Ttnvp=p = (Toppdd’) ~57 (T-opp d d”)

and the rules representing the equations of specific value and effect theories together

with straightforward rules of congruence

It is easy to see that,because the free monad carries the structure of producer terms,
these rules are reminiscent of the equational theory (without Sn-equations) of producer
terms presented in Section 3.6. However, due to partiality, we have to make additional
assumptions about arguments being related. In addition, this relation is parametrized

over another relation &7 to relate semantic values under T-return.
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;o

Definition 5.6.2. The partial equivalence relation ~"'? on semantic values

o ~7 e ([o]T)x([o]T)
relates semantic values of the same type.
edrxli“d «—= I'tnvd=d’
e dxli0 d = dxd
o d~lioNo2 g (fstd) =T (fst d’) && (snd d) ~'3 7 (snd o)

e drITd = Ve (Ren'I"),dd” € ([o]I) . &’ =7 d" =
(dfd) ~5T (d fd”)

This definition is very similar to the relation ~L:9 defined in Section 5.5.

e Semantic values of base type are related if and only if they are provably equal as

normal forms.
e Semantic values of unit type are related if and only if they are equal.
e Semantic values of product type are related if and only if both projections are related.

e Semantic values of function type are related if and only if, given two related semantic
values in some future context, the semantic applications are related in the future

context.

It is now routine to show that ~'7 and %?37 are Kripke logical relations satisfying the

monotonicity condition.

/

’. I
7 and %T’T are monotone under

Proposition 5.6.3 (Monotonicity). The relations ~

renamings.
(i) Vdd € ([o]T), fe (RenT'I") . ([J-rename fd) ~'7 ([]-rename f d’)

(ii) Vdd € (T[o]T), f € (RenT'I") . (T-rename f d) %?U (T-rename f d’)

Proof. We prove these result by structural induction on (i,iii) the types and (ii,iv) the
free monad structure. The proof follows similar structure to the proof of Proposition
5.5.4. 0
Definition 5.6.4. Similarly to Definition 5.5.6, two environments are related by the
Kripke logical relation

e ~I'T" ¢ (EnvIT) x (EnvI T

if and only if they are related at every single variable.
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ecerxlilege=Vxec(oel). (ex)~7 (e'x)

e

It follows from Proposition 5.6.3 that ~l 1"

~I0

is also monotone under renamings. In addition,

~I';

~e
~
~

the Kripke logical relations ~" '? and T; also satisfy the fundamental lemma of logical

relations.

Theorem 5.6.5 (Fundamental lemma of logical relations). Interpretations of value and

producer terms using related environments are related.
(i) Vte THvo), e, € EnvIT) . exlil e = ([t]ve) =7 ([t]ve)

(i) Ve Crpo), e,e’ € EWIT) . e~ e = ([t]pe) A0 " ([t]pe)
Proof. We prove the fundamental lemmas by structural induction on value and producer
terms. Similarly to the proof of Theorem 5.5.9, the only non-trivial case concerns the

sequenced producers which we prove by using Proposition 5.6.6. O]

Proposition 5.6.6. The logical relation %?G relates compositions of Kleisli extensions

and monad strength.

() Vte (t:Totpr),dd € (T[o]I), e € EWIT). drh 7 d &8 erlil ¢ —
(Av — [ t]p (env-extend (fst v) (snd v)))* (t-r (e , d)) Ng 7
(Av = [t]p (env-extend (fst v) (snd v)))* (t-r (e’ , d’))

Proof. We prove this result by induction on the derivation of the partial equivalence
relation d ~;.’7 d' simultaneously with proving the fundamental lemmas in Theorem

5.6.5. [l

Following the previous section, it is interesting to investigate whether the reification and

reflection maps are also compatible with these Kripke logical relations.

Proposition 5.6.7 (Compatibility). ~"? and a7 are compatible with the reification
and reflection maps.

(i) Vdd € ([o]T) . da"d = T Fnv (reify-v d) = (reify-v d)
(i) Vdd € (T[o]T) . d~p d = T knp (reify-p d) = (reify-p o)
(iii) Vtu € TFavo) . I'Fav t = u = (reflect-v t) =137 (reflect-v u)

)

(iv) Vtu € (CFapo) . I' Fap t = u = (reflect-pt) ~, 7 (reflect-p u)

Proof. We prove these results by simultaneous induction (i, iii) on the structure of types

and (ii, iv) on the derivation of the relations similarly to the proof of Proposition 5.5.7.
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In addition, as the equivalence relation for atomic values is definitionally equal to the

heterogeneous equality = | the given hypothesis I' Favt=u in (iii) unifies t and u. O

Corollary 5.6.8. It follows from Proposition 5.6.7 (iii) that the identity environments

id-env are related by ~IiT", O

In the soundness proof we present, we have to appeal to the naturality of the interpretation
maps. However, as we identify semantic values up to the Kripke logical relations ~'3? and
o

r*, we have to consider a more general naturality condition than given in Definition

3.4.2 of maps between presheaves.

Proposition 5.6.9. Given a value or producer term t, the resulting maps [t]v and [t]p
are natural up to the Kripke logical relations ~!*? and zgfo. Explicitly this means that
the following two naturality squares commute.

set (Env-Denot I') I” [ set (Denot o) I

env-rename f [I-rename f

set (Env-Denot I') I

set (Denot o) I'”

set (Env-Denot I') I set (T-Denot o) I

env-rename f T-rename f

set (Env-Denot I') I™” set (T-Denot o) I

]

Finally, we conclude this section by proving the soundness theorem for the residualizing

interpretation.

Theorem 5.6.10 (Soundness). The residualizing interpretation maps [_Jv and [_]p are
sound up to the Kripke logical relations ~' and zr_rp“’ with respect to the equational
theoriesI'Fvt=uand I'Fpt=u.

(i) Vtu € C+tvo), ee € EnvIT) . FFvi=ug&& e~xlil e —
([tlve) =7 ([ulve)

ii) Vtue Ctpo), ee € EnvI D). I'tpt=ud&e~xlil e =
() p Y p e
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([tlpe) ~r ([ulpe)

Proof. We prove soundness by simultaneous induction on the derivations of I' Fvt = u and

I'p
of ot

t = u. We only outline the most important inductive cases that also require the use

her results.
conglam - by using induction hypothesis together with the monotonicity of ~Li”

n— - by using the naturality of [_]v from Proposition 5.6.9 and the fundamental

lemma for &~ from Theorem 5.6.5

congto - by using the induction hypothesis together with the following result about
soundness of interpreting sequenced producers using Kleisli exponentials and monad

strength

(*) Vtue (T =o)bp7), e € EvIT), dd € (T[o]I) .
T:o)bpt=u&&d z;l?" d&& e~ e —=
(Av — [ t]p (env-extend (fst v) (snd v)))* (t-r (e, d)) %:Fp/”
(Av = [ u]p (env-extend (fst v) (snd v)))* (t-r (€', d’))

congreturn - by using the congruence rule for T-return in Definition 5.6.1 together with
the soundness result (i)

congop - by using the congruence rule for T-op in Definition 5.6.1

f— - by using the fundamental lemmas for ~'° and %?U from Theorem 5.6.5

Bto - by using the fundamental lemma for ~5” from Theorem 5.6.5

nto - by using the fundamental lemma for ~%/7 from Theorem 5.6.5 and the following

result about composing Kleisli extensions with the unit and strength of the monad

(**) Vee € (EnvlT),dd € (T[o]I").d z;’;a & && e il @ =
(Av — 7 (snd v))* (t-r (e, d) =0 7 &

opto - by using the fundamental lemma for ~%/° from Theorem 5.6.5 and the result

about composing Kleisli extensions and strength from Proposition 5.6.6

assocto - by using the fundamental lemma for %?" from Theorem 5.6.5 and the

associativity result for composing Kleisli extensions and monad strength

(Y Vte Tuotpo),ue (L:o)kpT),ee € (Envl ),
dd € (T[]l . dah'” & && e~ & =
(Av — [u]p (env-extend (fst v) (snd v)))*
(t-r(e, (AVv — [t]p (env-extend (fst v) (snd v)))* (t-r (e, d))))

/.
NF7T
~

T
(Av = (A v — [ Fp-rename exchange (Fp-rename wk; u) ]p
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(env-extend (fst v)) (snd v)))*
(t-r ((env-extend (fst v’) (snd Vv’)) , [ t Jp (env-extend (fst v) (snd v)))))*
(t-r (e’ , d"))

O

Although this soundness result is proved up to the Kripke logical relations ~! ¢ and
%?U, it is possible to recover the usual notion of soundness up to equality if there are no

equations in the value and effect theories.
Proposition 5.6.11. If the sets of equations F,, and FE.z are empty, the residualizing
interpretations [_]v and [_]p are sound up to equality.

(i) Vtue Tkvo),e € (EnvI ). Thvt=u= ([t]ve) = (Ju]ve)

(ii) Vtue (Ckpo),e € (EnvI ). I'tpt=u= ([t]pe) = (Julpe)

Proof. Similarly to Theorem 5.6.10, this soundness result is again proved by simultaneous
induction on the derivations of T'Fvt=u and T' Fpt = u but now using the usual notion

of naturality. O

5.7 Correctness of the normalization algorithm

We conclude this chapter by proving the correctness of our NBE algorithm. We present
the correctness results as the following four theorems. These results formalize the three
conditions given in Section 2.3 together with showing that our normalization algorithm

works modulo the given value and effect theories.
Theorem 5.7.1 (Preserving normal forms). When applied to normal forms, the normal-
ization function acts as an identity.

(i) Vt € (['Fnv o) . nf-v (Fnv-embed t) 2t

(ii) YVt € (L Fnp o) . nf-p (Fnp-embed t) = t
Proof. We prove this theorem directly by using the definitions of nf-v and nf-p together
with Proposition 5.4.1 (i)-(ii). O

Theorem 5.7.2 (Provable equality). Every value and producer term is provably equal
to its normal form.

(i) Vte (I'Fvo) . T Fvt=tnv-embed (nf-v t)

(ii) Vt€ (CFpo) . T'Fpt=Fnp-embed (nf-pt)
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Proof. We prove this theorem by using the fundamental lemmas of logical relations and

the compatibility results from earlier.

We first observe that the identity substitutions and identity environments are related
by ~Li1" (Corollary 5.5.8).

We then use the fundamental lemma of Kripke logical relations between syntax and
semantics from Theorem 5.5.9 on identity substitutions and identity environments
and get (subst-v id-subst t) ~,* ([ t Jv id-env) and (subst-p id-subst t) ~** ([ t Jp id-env).

We show that subst-v id-substt =t and subst-p id-subst t =t and get

t~y 7 ([t]vid-env) and t ~7 ([t p id-env).

Next, we apply Proposition 5.5.7 to these relations and get
I Fv t = Fnv-embed (reify-v ([ t Jv id-env)) and T Fp t = Fnp-embed (reify-p ([ t Jp id-env))

Finally, we notice that the right hand sides are definitionally equal to
Fnv-embed (nf-v 1) and Fnp-embed (nf-p 1). ]

Theorem 5.7.3 (Normal forms). Given two provably equal terms, their normal forms

are equivalent modulo the given value and effect theories.

(i) Vtue (T'tvo) . PFvt=u = TI'Fnvnf-vt=nfvu

(ii) Vtbue (Ckpo) . Tkpt=u = T'Fnpnf-pt=nf-pu

Proof. We prove this theorem by using the soundness and compatibility results from

earlier.

We first observe that the identity environments are related by ~I:'" (Corollary
5.6.8).

We then use the soundness result in Theorem 5.6.10 and get

([t]vid-env) =7 ([ u]vid-env) and ([ t |p id-env) %?" ([ u Jp id-env).

Next, we use the compatibility results from Proposition 5.6.7 (i)-(ii) and get
I Fnv reify-v ([ t v id-env) = reify-v ([ u v id-env) and

I" Fnp reify-p ([ t Jp id-env) = reify-p ([ u [p id-env)

Finally, we notice that these equations are definitionally equal to

I'knvnf-vt=nfvu and I Fnp nf-pt=nf-pu [

Theorem 5.7.4 (Normalization modulo the value and effect theories). Normal forms of

FGCBVg value and producer terms containing only the structure given in the signatures

Ya and Yo are equal to the extensions of corresponding value and effect terms.

(i) Vt € (I'+o) . (nf-v (extend-val t)) = (extend-val-nv t)
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(ii) Vo €Ty, t € (I', AFE) . (nf-p (extend-eff o 1)) = (extend-eff-np o t)

Proof. We prove both (i) and (ii) by structural induction on the value and effect terms.

We apply (i) to prove the base case for effect variables in (ii). O
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Chapter 6
Conservativity of the extension

In this chapter, we present one of our main contributions, namely, the proof that the
proposed extension of value and effect theories is conservative. The proof is based on the

correctness results of the NBE algorithm from the previous chapter.

6.1 Conservativity theorem

Theorem 6.1.1 (Conservativity theorem). Given two value or effect terms t and u, they
are provably equal in the value and effect theories if and only if they are provably equal
in FGCBVeH

(i) Vt,u € ([t o). I'+t=u <= (extend-valctx I') kv (extend-val t) = (extend-val u)

(ii) V o € BaseTy, t,u € (', AFE) . T'FEt=u <~
(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff o u)

Proof. We prove both directions separately in Theorem 6.1.2 and 6.1.4. In addition,
notice that in (ii) we require the given FGCBV.g type to be a base type although we omit
the extensions extend-ty o for readability. As a result, we only consider producer terms
that are expressible in the effect theory in the <= direction. For the = direction, we

can give a more general result using an arbitrary FGCBV. g type. O
Theorem 6.1.2 (= direction). Given two value or effect terms, if they are provably
equal in the value or effect theories, then they are provably equal in FGCBV .

(i) Vt,ue (['+o) . I'Ft=u = (extend-valctx I') v (extend-val t) = (extend-val u)

(i) VoeTy,tue (,AFE) . TFEt=u =

(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff o u)
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Proof. ~ We prove (i) and (ii) by simultaneous induction on the derivations of
I't=uand I'+Et=u. Both the base and inductive cases are immediate because we have
extended the equational theory of FGCBV,.¢ with all the equations in the corresponding

value and effect theories. O

On the other hand, before we prove the <= direction, we need a similar result about the

extension of value and effect theories to normal forms.

Proposition 6.1.3. Given two value or effect terms, if they are provably equal as normal

forms, then they are provably equal in the value and effect theories.
(i) Vt,u € (' o) . (extend-valctx ') Fnv (extend-val-nv t) = (extend-val-nvu) = I'-t=u

(ii) V o € BaseTy, t,u € (I', AFE) .
(extend-valctx I') @ (extend-effctx o A) Fnp (extend-eff-np o t) = (extend-eff-np o u)
— I'FEt=u

Proof.! We prove (i) and (ii) by simultaneous induction on the derivations of the provable

equality on normal forms. The proof is based on three notable observations.

e The equational theories of normal forms do not include any fn-equations that are
present in the equational theory of FGCBV,.g. Moreover, if E,, and E.s are empty

then normal forms of provably equal terms are actually equal.

e extend-val-nv t only returns variables and value terms corresponding to function sym-

bols.

e extend-eff-np t returns operations and the producer terms corresponding to effect
variables, (*) e.g., (appAP (var (extend-effvar w)) x) toNP (returnNP (avNV (varAV Hd))).
This observation is possible because we consider only base types and variables of

base type can be embedded into normal values.

Therefore, the induction on the derivations of the assumed proof terms involves equa-
tions for reflexivity, symmetry, transitivity, congruence of function symbols, congruence
of operations, (**) congruence of toNP and the equations of the value and effect theories.
These equations, except for (**), have corresponding counterparts in the value and effect
theories and, therefore, we can construct all the required proofs in the value and effect
theories. However, notice that the equation (**) only relates normal producers of the
form (*) arising from extensions of effect variables. These normal producers can only be
related if the applications are related as atomic producers. Further, the atomic producers
are only related when the atomic values (i.e., effect variables) are equal allowing us to

construct a corresponding proof in the effect theory. O]

IThe proof of Proposition 6.1.3 has not yet been formalized in Agda.
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Theorem 6.1.4 (<= direction). Given two value or effect terms, if they are provably

equal in FGCBV g, then they are provably equal in the value and effect theories.
(i) Vt,u € ('t o) . (extend-valctx T') kv (extend-val t) = (extend-valu) = I't=u

(ii) V o € BaseTy, t,u € (I', A+E) .
(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff o u)
— I'FEt=u

Proof. We do not prove (i) and (ii) directly but instead use Proposition 6.1.3 together

with the correctness results of our NBE algorithm.

e We first use Proposition 6.1.3 to reduce the theorem to showing an implication from
the equational theory of FGCBV.¢ to the equational theories of normal forms as
(extend-valctx I') v (extend-val t) = (extend-val u) —-

(extend-valctx I') Fnv (extend-val-nv t) = (extend-val-nv u)

and

(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff o u) —>
(extend-valctx I') @ (extend-effctx o A) Fnp (extend-eff-np o t) = (extend-eff-np o u).

e We apply Theorem 5.7.4 to the right hand sides above to work with normalized
extensions of value and effect terms in
(extend-valctx I') v (extend-val t) = (extend-val u) —-
(extend-valctx I') Fnv (nf-v (extend-val t)) = (nf-v (extend-val u))
and
(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff 0 uU) =
(extend-valctx I') @ (extend-effctx o A) Fnp (nf-p (extend-eff o t)) = (nf-p (extend-eff o u)).

e We use Theorem 5.7.3 with (extend-valctx I') v (extend-val t) = (extend-val u) and
(extend-valctx I') @ (extend-effctx o A) Fp (extend-eff o t) = (extend-eff o u) to prove the

implications above. O
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Chapter 7

Conclusions

We discussed the modeling of and reasoning about impure higher-order functional pro-
grams and gave an overview of two main approaches to give a rigorous mathematical
theory to computational effects and the impurity they introduce. Namely, we discussed
the approach of using monads that was first proposed by Moggi and also the approach
of using algebraic theories as proposed by Plotkin and Power. Although the former has
gained more ground in programming language semantics, the latter gives a more natural
and intuitive mathematical account of the behavior of computational effects. In this dis-
sertation, we discussed an extension of such algebraic theories of computational effects
to the fine-grained call-by-value intermediate language (FGCBVg) suitable for reasoning
about ML-like impure programs. Whilst the extension itself is intuitive and straight-
forward, the proof of its conservativity forms the major part of the work we presented
here. It turned out that one first needs an effective way of deciding provable equality in
FGCBV,g before the conservativity of the extension can be proved. For this reason, we
used a semantic reduction-free normalization method, called normalization by evaluation
(NBE), giving us the needed decision procedure. This method computes normal forms by
inverting the interpretation of the syntax of FGCBV 4. The NBE algorithm we present
in this dissertation gives a generalization of the usual presentations of NBE. In particu-
lar, we identify both the interpretation of syntax and the resulting normal forms up to
suitable equivalence relations. As a result, the NBE algorithm we present normalizes the
terms in FGCBV ¢ modulo the given algebraic theory of computational effects. Both the
normalization algorithm and its proofs of correctness have been fully formalized in an

interactive theorem prover and functional programming language Agda.
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7.1 Future work

7.1.1 Extending the type signature

We considered a version of FGCBV ¢ with a rather modest type signature. For example,
although we discussed finite products and function space, we omitted sum types and the
empty type (i.e., finite coproducts) and also natural numbers. We conjecture that the
addition of these types to the language and the conservativity proof should follow from
the earlier work in the literature. For example, Altenkirch, Dybjer, Hofmann and Scott
[2] have defined an NBE algorithm for simply typed lambda calculus with sum types (i.e.,
binary coproducts). More recently, Balat, Di Cosmo and Fiore [6] have shown that the
same can be done for both the sum types and the empty type when using Grothendieck
logical relations together with corresponding categories. These results suggest that similar
approaches should suffice for the FGCBV 4 when the eliminators of the sum types and
the empty type are considered as value terms. On the other hand, natural numbers have
been discussed by Dybjer and Filinski [12] in their work on NBE and type-directed partial
evaluation for Godel’s System T. In FGCBV g, we should only need to consider a category
with a suitable natural number object to accommodate them in our normalization and

conservativity proofs.

7.1.2 First-order representations of context renamings in Agda

In Section 3.2, we suggested that it might be desirable to use first-order representation of
injective context renamings instead modeling them as higher-order functions. The repres-
entation we proposed to use is called order-preserving embeddings (OPEs) and illustrated
in Chapman’s PhD thesis [10, Section 4.5]. OPEs have also appeared as the category of
weakenings in the work of Altekirch, Hofmann and Streicher [4]. The idea is to define
first-order operations from one context to another keeping the old variables and explicitly
marking where new variables should appear. We have high hopes that such first-order
representation would free us from having to postulate functional extensionality for het-
erogeneous equality in Agda. In particular, as the extensionality for semantic values is
encoded in the definition of the partial equivalence relation ~":°=7 for function types, the

only proofs that use the postulated extensionality are concerned with context renamings.

7.1.3 Substitutions for normal forms

It is worthwhile to notice that we currently can not accommodate effect-dependency in

the NBE correctness proofs and in the conservativity theorem. For example, consider
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another natural equation for deterministic choice

', x:bool ', My:0 D', My:o
I' F, if , x then M, else M, = if,, x then M, [true/z] else M,[false/z] : o

describing that, after making the choice, the boolean variable x would be true in the first
branch and false in the other branch. If we would have this equation in the equational the-
ory of FGCBV ., we would also need to add the corresponding equation to the equational
theory of normal forms to prove the correctness of our NBE algorithm and the conser-
vativity of the extension. However, it is worth noting that we cannot use the usual notion
of substitutions for normal producers. In particular, we need to use a more general notion
of substitutions, e.g., hereditary substitutions [38] that are capable of preserving normal
forms when applying the substitutions. Lately, Keller and Altenkirch [20] have formalized
a structurally recursive version of hereditary substitutions for the simply typed lambda
calculus. We propose to follow their work to develop a similar notion of substitutions for

our normal and atomic forms to define the effect-dependent equations for normal forms.
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