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Abstract. Abbott, Altenkirch, Ghani and others have taught us that
many parameterized datatypes (set functors) can be usefully analyzed
via container representations in terms of a set of shapes and a set of po-
sitions in each shape. This paper builds on the observation that datatypes
often carry additional structure that containers alone do not account for.
We introduce directed containers to capture the common situation where
every position in a datastructure determines another datastructure, in-
formally, the sub-datastructure rooted by that position. Some natural
examples are non-empty lists and node-labelled trees, and datastructures
with a designated position (zippers). While containers denote set functors
via a fully-faithful functor, directed containers interpret fully-faithfully
into comonads. But more is true: every comonad whose underlying func-
tor is a container is represented by a directed container. In fact, directed
containers are the same as containers that are comonads. We also de-
scribe some constructions of directed containers. We have formalized our
development in the dependently typed programming language Agda.

1 Introduction

Containers, as introduced by Abbott, Altenkirch and Ghani [1] are a neat rep-
resentation for a wide class of parameterized datatypes (set functors) in terms
of a set of shapes and a set of positions in each shape. They cover lists, col-
ists, streams, various kinds of trees, etc. Containers can be used as a “syntax”
for programming with these datatypes and reasoning about them, as can the
strictly positive datatypes and polynomial functors of Dybjer [8], Moerdijk and
Palmgren [16], Gambino and Hyland [9], and Kock [15]. The theory of this class
of datatypes is elegant, as they are well-behaved in many respects.

This paper proceeds from the observation that datatypes often carry addi-
tional structure that containers alone do not account for. We introduce directed
containers to capture the common situation in programming where every posi-
tion in a datastructure determines another datastructure, informally, the sub-
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datastructure rooted by that position. Some natural examples of such datas-
tructures are non-empty lists and node-labelled trees, and datastructures with a
designated position or focus (zippers). In the former case, the sub-datastructure
is a sublist or a subtree. In the latter case, it is the whole datastructure but with
the focus moved to the given position.

We show that directed containers are no less neat than containers. While
containers denote set functors via a fully-faithful functor, directed containers
interpret fully-faithfully into comonads. They admit some of the constructions
that containers do, but not others: for instance, two directed containers cannot be
composed in general. Our main result is that every comonad whose underlying
functor is the interpretation of a container is the interpretation of a directed
container. So the answer to the question in the title of this paper is: a container
is a comonad exactly when it is a directed container. In more precise terms, the
category of directed containers is the pullback of the forgetful functor from the
category of comonads to that of set functors along the interpretation functor of
containers. This also means that a directed container is the same as a comonoid
in the category of containers.

In Sect. 2, we review the basic theory of containers, showing also some ex-
amples. We introduce containers and their interpretation into set functors. We
show some constructions of containers such as the coproduct of containers. In
Sect. 3, we revisit our examples and introduce directed containers as a special-
ization of containers and describe their interpretation into comonads. We look at
some constructions, in particular the focussed container (zipper) construction.
Our main result, that a container is a comonad exactly when it is directed, is
the subject of Sect. 4. In Sect. 5, we ask whether a similar characterization is
possible for containers that are monads and hint that this is the case. We briefly
summarize related work in Sect. 6 and conclude with outlining some directions
for future work in Sect. 7

We spend a section on the background theory of containers as they are central
for our paper but relatively little known, but assume that the reader knows about
comonads, monoidal categories, monoidal functors and comonoids.

In our mathematics, we use syntax similar to the dependently typed func-
tional programming language Agda [18]. If some function argument will be deriv-
able in most contexts, we mark it as implicit by enclosing it/its type in braces in
the function’s type declaration and either give this argument in braces or omit
it in the definition and applications of the function.

For lack of space, we have omitted all proofs from the paper. We have for-
malised our proofs in Agda; the development is available at http://cs.ioc.ee/
~danel/dcont.html.

2 Containers

We begin with a recap of containers. We introduce the category of containers
and the fully-faithful functor into the category of set functors defining the inter-
pretation of containers and show that these are monoidal. We also recall some



basic constructions of containers. For proofs of the propositions in this section
and further information, we refer the reader to Abbott et al. [1, 4].

2.1 Containers

Containers are a form of “syntax” for datatypes. A container S <1 P is given by
a set S : Set of shapes and a shape-indexed family P : .S — Set of positions.

Intuitively, shapes are “templates” for datastructures and positions identify
“blanks” in these templates that can be filled with data. The datatype of lists is
represented by S <1 P where the shapes S = Nat are the possible lengths of lists
and the positions P s = Fins = {0,...,s— 1} provide s places for data in lists of
length s. Non-empty lists are obtained by letting S = Nat and P s = Fin (s + 1)
(so that shape s has s + 1 rather than s positions). Streams are characterized
by a single shape with natural number positions: S = 1 = {*} and P * = Nat.
The singleton datatype has one shape and one position: S =1, P = 1.

A morphism between containers S <1 P and S’ <1 P’ is a pair ¢ <1 ¢ of maps
t:S — S and g : {s : S}.P' (ts) — Ps (the shape map and position
map). Note how the positions are mapped backwards. The intuition is that, if a
function between two datatypes does not look at the data, then the shape of a
datastructure given to it must determine the shape of the datastructure returned
and the data in any position in the shape returned must come from a definite
position in the given shape.

For example, the head function, sending a non-empty list to a single data
item, is determined by the maps ¢ : Nat — 1 and ¢ : II{s : Nat}.1 — Fin (s + 1)
defined by ¢t - = % and g% = 0. The tail function, sending a non-empty list to
a list, is represented by ¢ : Nat — Nat and ¢ : IT{s : Nat}.Fins — Fin(s 4+ 1)
defined by ts = s and ¢p = p + 1. For the function dropping every second
element of a non-empty list, the shape and position maps ¢ : Nat — Nat and
q:II{s:Nat}.Fin(s+2+1) — Fin(s+1) arets = s+2and ¢ {s} p = px2. For
reversal of non-empty lists, they are ¢ : Nat — Nat and ¢ : IT{s : Nat}.Fin (s +
1) = Fin(s+ 1) defined by ¢t s = s and ¢ {s} p = s — p. (See Prince et al. [19] for
more similar examples.)

The identity morphism id°{C} on a container C = S < P is defined by
id® = id {S} < Ms}.id {P s}. The composition h o° h’ of container morphisms
h=t<qand ' =t <4 is defined by h o° b’ =tot' qQA{s}.q {s}oq{t's}.
Composition of container morphisms is associative, identity is the unit.

Proposition 1. Containers form a category Cont.

2.2 Interpretation of Containers

To map containers into datatypes made of datastructures that have the positions
in some shape filled with data, we must equip containers with a “semantics”.
For a container C' = S < P, we define its interpretation [C]° : Set — Set on
sets by [C]° X = X's: S. Ps — X, so that [C]° X consists of pairs of a shape and
an assignment of an element of X to each of the positions in this shape, reflecting



the “template-and-blanks” idea. The interpretation [C]° : V{X} {Y}. (X —
Y)—= (¥s: S Ps— X)— XYs:S Ps— Y of C on functions is defined by
[C]€ f (s,v) = (s, f ov). It is straightforward that [C]°® preserves identity and
composition of functions, so it is a set functor (as any datatype should be).

Our example containers denote the datatypes intended. If we let C' be the
container of lists, we have [C]° X = X's : Nat.Fins — X 2 List X. The container
of streams interprets into X'* : 1. Nat — X = Nat — X = Str X. Etc.

A morphism h = t < ¢ between containers C = S<9P and C = S' < P’
is interpreted as a natural transformation between [C]° and [C']¢, i.e., as a
polymorphic function [A]¢ : V{X}.(X¥s : S.Ps —» X) —» Ys' : . P's = X
that is natural. It is defined by [h]¢ (s,v) = (ts,v 0 ¢{s}). [—]° preserves the
identities and composition of container morphisms.

The interpretation of the container morphism A corresponding to the list
head function [R]® : V{X}.(Xs : Nat.Fin(s +1) — X) = X% : 1.1 — X is
defined by [h]° (s,v) = (*, Ax.v0).

Proposition 2. [—]° is a functor from Cont to [Set, Set].

Every natural transformation between container interpretations is the inter-
pretation of some container morphism. For containers C = S <t P and C' =
S’ < P’, a natural transformation 7 between [C]¢ and [C']¢, i.e., a polymor-
phic function 7 : V{X}.(X¥s : S.Ps — X) — Ys' : 8. P's’ — X that is
natural, can be “quoted” to a container morphism "77¢ = (¢ < ¢q) between C
and C" where t : S — 5" and ¢ : II{s : S}.P' (ts) — Ps are defined by
Fre = (As.fst (1 {P s} (s,id))) < (A\{s}.snd (7 {P s} (s,id))).

For any container morphism h, "[h]¢7¢ = h, and, for any natural transfor-
mation 7 and 7/ between container interpretations, "77¢ = "7/7¢ implies 7 = 7’.

Proposition 3. [—]¢ is fully faithful.

2.3 Monoidal Structure

We have already seen the identity container 1d® = 1 < Ax.1. The composition
Co € C; of containers Cy = Sy < Py and C7 = 57 < P; is the container S < P
defined by S = Xs : Syp. Pps — S1 and P (s,v) = Xpo : Pos. Py (vpg). Tt
has as shapes pairs of an outer shape s and an assignment of an inner shape
to every position in s. The positions in the composite container are pairs of a
position p in the outer shape and a position in the inner shape assigned to p.
The (horizontal) composition hq - hy of container morphisms hy = ¢y <0 g and
hi1 = t1<9¢ is the container morphism ¢<1q defined by ¢ (s, v) = (¢o s, t10voqy {s})
and g {s,v} (po,p1) = (g0 {s}po,q1 {v(go{s} o)} p1). The horizontal composi-
tion preserves the identity container morphisms and the (vertical) composition
of container morphisms, which means that — - — is a bifunctor.

Cont has isomorphisms p : V{C}.C © Id° — C, X : Y{C}.ld° © C —
C and a : V{C}H{C'},{C"}.(C < C) < C" = C - (C'" - C"), defined
by p = A(s,v).8 < As,v}. Ap. (p, %), A = A(x,0).vx < AX{*,v}. A\p. (,p), a =
A((s,0),0"). (8, Ap. (v p, Ap". 0" (p, ) < M(s,0), 0"} Alp, (P, p7))- ((p, P'): P7).



Proposition 4. The category Cont is a monoidal category.

There are also natural isomorphisms e : Id — [Id°]¢ and m : V{Co}, {C4}.
[Col® - [C1]° — [Co -© C1]° that are defined by ez = (%, Ax.z) and m (s,v) =
((s, Ap.fst(vp)), A(p,p').snd (vp) p’) and are coherent.

Proposition 5. The functor [—]° is a monoidal functor.

2.4 Constructions of Containers

Containers are closed under various constructions such as products, coproducts
and constant exponentiation, preserved by interpretation.

— For two containers Cy = Sy < Py and C7; = 57 < Py, their product Cy x C7 is
the container S <1 P defined by S = Sy x S1 and P (sg,s1) = Pyso + P1 s1.
It holds that [Cy x C1]° = [Co]© x [C4]°.

— The coproduct Cy + C7 of containers Cy = Sy <t Py and Cy = S7 < Py is the
container S <1 P defined by S = Sp+ S1, P (inls) = Pys and P (inrs) = P; s.
It is the case that [Co + C1]° = [Co]° + [C1]°.

— For a set K € Set and a container Cy = Sy < Py, the exponential K — Cj
is the container S < P where S = K — Sp and P f = Xk : K.P(fk). We
have that [K — Cy]° & K — [Co]°.

3 Directed Containers

We now proceed to our contribution, directed containers. We define the category
of directed containers and a fully-faithful functor interpreting directed containers
as comonads, and discuss some examples and constructions.

3.1 Directed Containers

Datatypes often carry some additional structure that is worth making explicit.
For example, each node in a list or non-empty list defines a sublist (a suffix).
In container terms, this corresponds to every position in a shape determining
another shape, the subshape corresponding to this position. The theory of con-
tainers alone does not account for such additional structure. Directed containers,
studied in the rest of this paper, axiomatize subshapes and translation of posi-
tions in a subshape into the global shape.
A directed container is a container S <1 P together with three operations

— }:IIs: S Ps— S (the subshape for a position),

— o0:1II{s:5}.Ps (the root),

— @ :II{s: S}.Ip: Ps.P(s ] p) = Ps (translation of subshape positions
into positions in the global shape).

satisfying the following two shape equations and three position equations:



V{s}.s L o=s,

Y{s,p,p'}.sl(p@p)=(slp v,

V{s,p}.p ® {s}o=p,

V{s,p}.o{s} ®p=np,

Y{s,p, 0, "} (p @ {s}p)©p" =pd (p ©p").

U o=

(Using @ as an infix operation, we write the first, implicit, argument next to the
operation symbol when we want to give it explicitly.) Modulo the fact that the
positions involved come from different sets, laws 3-5 are the laws of a monoid.

To help explain the operations and laws, we sketch in Fig. 1 a datastructure
with nested sub-datastructures.

(p@p")®p" =pd(»'®p"")

7
!

 s"'=sl(pdp’)=s"1p’ b « s'=slp “s=slo{s}

Fig. 1. A datastructure with two nested sub-datastructures

The global shape s is marked with a solid boundary and has a root position
0{s}. Then, any position p in s determines a shape s’ = s | p, marked with a
dotted boundary, to be thought of as the subshape of s given by this position.
The root position in s is o {s’'}. Law 3 says that its translation p @ o {s'} into a
position in shape s is p, reflecting the idea that the subshape given by a position
should have that position as the root.

By law 1, the subshape s | o {s} corresponding to the root position o{s} in
the global shape s is s itself. Law 4, which is only well-typed thanks to law 1,
stipulates that the translation of position p in s | o{s} into a position in s is
just p (which is possible, as P (s | o{s}) = Ps).

A further position p’ in s’ determines a shape s” = s’ | p’. But p’ also
translates into a position p @ p’ in s and that determines a shape s | (p & p’).
Law 2 says that s” and s | (p @ p’) are the same shape, which is marked by a
dashed boundary in the figure. Finally, law 5 (well-typed only because of law 2)



says that the two alternative ways to translate a position p” in shape s” into a
position in shape s agree with each other.

Lists cannot form a directed container, as the shape 0 (for the empty list),
having no positions, has no possible root position. But the container of non-
empty lists (with S = Nat and Ps = Fin(sucs)) is a directed container with
respect to suffizes as (non-empty) sublists. The subshape given by a position p
in a shape s (for lists of length s + 1) is the shape of the corresponding suffix,
given by s | p = s — p. The root o{s} is the position 0 of the head node. A
position in the global shape is recovered from a position p’ in the subshape of
the position pby p®p' =p+p'.

The “template” of non-empty lists of shape s = 5 (length 6) is given in Fig.
2. This figure also shows that the subshape determined by a position p = 2
in the global shape sis s’ =s | p=5—2 =3 and a position p’ = 1 in s is
rendered as the position p @ p’ = 2+1 = 3 in the initial shape. Clearly one could

5" Zs|p=5-2=3

Fig. 2. The “template” of non-empty lists of shape 5 (length 6)

also choose prefixes as subshapes and the last node of a non-empty list as the
root, but this gives an isomorphic directed container. Non-empty lists also give
rise to an entirely different directed container structure that has cyclic shifts as
“sublists” (this example was suggested to us by Jeremy Gibbons). The subshape
at each position is the global shape (s | p = s). The root is still o {s} = 0. The
interesting part is that translation into the global shape of a subshape position
is defined by p ® {s}p’ = (p+p’) mod s, satisfying all the required laws.

The container of streams (S = 1, P = Nat) carries a very trivial directed
container structure given by * | p =%, 0=0and p ® p’ = p+ p’. Fig. 3 shows
how a position p = 2 in the only possible global shape s = * and a position
p’ = 2 in the equal subshape s’ = s | p = * give back a position p+p = 4 in the
global shape.

Similarly to the theory of containers, one can also define morphisms between
directed containers. A morphism between directed containers (S<1P,],0,®) and
(S'<aP',], 0, &) is a morphism ¢ <1q between the containers S <1 P and S’ < P’
that satisfies three laws:

— V{s,p}.t(slqgp)=ts] p,
— V{s}.o{s} =q (o' {ts}),



Fig. 3. The template of streams

= V{s,p,p'}.qp ® {s}qp’ = q(p & {ts}p).

Recall the intuition that ¢ determines the shape of the datastructure that
some given datastructure is sent to and ¢ identifies for every position in the
datastructure returned a position in the given datastructure. These laws say that
the positions in the sub-datastructure for any position in the resulting datas-
tructure must map back to positions in the corresponding sub-datastructure of
the given datastructure. This means that they can receive data only from those
positions, other flows are forbidden.

The container representations of the head and drop-even functions for non-
empty lists are directed container morphisms. But that of reversal is not.

The identities and composition of Cont can give the identities and composi-
tion for directed containers, since for every directed container E = (C, |, 0, ®),
the identity container morphism id®{C} is a directed container morphism and
the composition h o h' of two directed container morphisms is also a directed
container morphism.

Proposition 6. Directed containers form a category DCont.

3.2 Interpretation of Directed Containers

As directed containers are containers with some operations obeying some laws,
a directed container should denote not just a set functor, but a set functor with
operations obeying some laws. The correct domain of denotation for directed
containers is provided by comonads on sets.

Given a directed container E = (S < P, |, 0,®), we define its interpretation
[E]“ to be the set functor D = [S<IP]° (i.e., the interpretation of the underlying
container) together with two natural transformations

eV X} (Xs:S.Ps—X)— X

e(s,v) =v(o{s})

0:V{X}.(Ys:SPs—X)—>Xs:S. Ps—Xs:5Ps —X
0 (s,v) = (8,Ap. (s L p, Ap' v (p @ {s} D))

The directed container laws ensure that the natural transformations €, § make
the counit and comultiplication of a comonad structure on D.



Intuitively, the counit extracts the data at the root position of a datastruc-
ture (e.g., the head of a non-empty list), the comultiplication, which produces
a datastructure of datastructures, replaces the data at every position with the
sub-datastructure corresponding to this position (e.g., the corresponding suffix
or cyclic shift).

The interpretation [h]“® of a morphism h between directed containers
E = (C,|,0,®), E' = (C',]',0',&") is defined by [h]4 = [h]¢ (using that h
is a container morphism between C' and C”). The directed container morphism
laws ensure that this natural transformation between [C]¢ and [C']° is also a
comonad morphism between [E]% and [E']4.

Since Comonads(Set) inherits its identities and composition from [Set, Set],
[—]9¢ also preserves the identities and composition.

Hdc

Proposition 7. [~]% is a functor from DCont to Comonads(Set).

Similarly to the case of natural transformations between container interpre-
tations, one can also “quote” comonad morphisms between directed container
interpretations into directed container morphisms. For any directed containers
E=(C,l,0,®), E' = (C",|',0',®") and any morphism 7 between the comonads
[E]4¢ and [E’]9¢ (which is a natural transformation between [C]¢ and [C’]¢),
the container morphism "779¢ = "77¢ between the underlying containers C' and
(' is also a directed container morphism between FE and E’. The directed con-
tainer morphism laws follow from the comonad morphism laws.

From what we already know about interpretation and quoting of container
morphisms, it is immediate that "[h]9¢74¢ = h for any directed container mor-
phism A and that T779¢ = "7/74¢ implies 7 = 7/ for any comonad morphisms 7
and 7' between directed container interpretations.

Proposition 8. [—]4¢ is fully faithful.

The identity container 1d° = 1<1\*. 1 extends trivially to an identity directed
container whose denotation is isomorphic to the identity comonad. But, similarly
to the situation with functors and comonads, composition of containers fails to
yield a composition monoidal structure on DCont.

3.3 Constructions of Directed Containers

We now show some constructions of directed containers. While some standard
constructions of containers extend to directed containers, others do not.

Coproducts Given two directed containers Fy = (So < Py, lg,00,P0), E1 =
(S1<Py, 4,01, ®1), their coproduct is (S<1P, |, 0, ®) whose underlying container
S < P is the coproduct of containers Sy <1 Py and S; <1 P;. All of the directed
container operations are defined either using |, 09, o or |, 01, @1 depending on
the given shape. This means that the subshape is given by inls | p = inl (s |, p)
and inrs | p = inr(s J; p), the root position is given by o{inls} = og{s} or
o{inrs} = 01 {s} and the position in the initial shape is given by p & {inls}p’ =
p Go {s}p’ and p @ {inrs}p’ = p &1 {s}p’. Its interpretation is isomorphic to
the coproduct of comonads [Eo]%¢ and [E;]4.



Directed containers from monoids Any monoid (M, e, o) gives rise to a directed
container E = (S < P,|,0,®) where there is only one shape * (with S = 1)
whose positions Px = M are the elements in the carrier set. The subshape
operation * | p = x thus becomes trivial as there is only one shape to return.
Furthermore, the root position o {*} = e in the shape * is the unit of the monoid
and the position in the initial shape is given by using the monoid operation
p @ {x}p’ =pep'. The interpretation of this directed container is the comonad
(D,e,0) where DX =M — X, e=Af. fe, 6 =M. \p,p'. f(pep).

Cofree directed containers The cofree directed container on a container C' =
So <Py is E = (S<P,],0,®) where the underlying container is defined as
S =vZXs: S8.Pos - Z and P = uZ. X\(s,v).1+ Xp : Pys.Z (vp). The
subshapes are defined by (s,v) | inl* = (s,v) and (s,v) | inr(p,p’) = vp |
p’. The root position is defined by o{s,v} = inl* and subshape positions by
inlx @ {s,v}p” = p’ and inr(p,p’) ® {s,v}p” = inr(p,p’ ® {vp}p”). The
interpretation [E]4 = (D,e,d) of this directed container has its underlying
functor given by DX = vZ. X x [C]°Z and is the cofree comonad on the
functor [C]°.

A different directed container, the cofree recursive directed container on C is
obtained by replacing the v in the definition of S with p. The interpretation has
its underlying functor given by D X = uZ. X x [C]¢ Z and is the cofree recursive
comonad on [C]°.

There is no general way to endow the product of the underlying containers of
two directed containers Ey = (So <1 Py, 1,00, Do) and Ey = (S1 < P1,q,01,D1)
with the structure of a directed container. One can define S = Sy x S; and
P (so,81) = Py so + Py s1, but there are two choices oy and o; for o. Moreover,
there is no general way to define p @ p’. But this should not be surprising, as the
product of the underlying functors of two comonads is not generally a comonad.
Also, the product of two comonads would not be a comonad structure on the
product of the underlying functors.

3.4 Focussing

Another interesting construction turning any container into a directed container
is “focussing”.

Datastructures with a focus Any container C' = Sy <1 Py defines a directed con-
tainer (S < P, J,0,®) as follows. We take S = X's: Sy. Py s, so that a shape is a
pair of a shape s, the “shape proper”, and an arbitrary position p in that shape,
the “focus”. We take P (s,p) = Py s, so that a position in the shape (s,p) is a
position in the shape proper s, irrespective of the focus. The subshape deter-
mined by position p’ in shape (s,p) is given by keeping the shape proper but
changing the focus: (s,p) | p’ = (s,p’). The root in the shape (s,p) is the focus
p such that o{s,p} = p. Finally, we take the translation of positions from the
subshape (s, p’) given by position p’ to shape (s, p) to be the identity, by defining
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p @ {s,p}p” = p”. All directed container laws are satisfied. This directed con-
tainer interprets into the canonical comonad structure on the functor 9[C]° x Id
where JF denotes the derivative of the functor F.

Zippers Inductive (tree-like) datatypes with a designated focus position are iso-
morphic to the zipper types of Huet [13]. A zipper datastructure encodes a tree
with a focus as a pair of a context and a tree. The tree is the subtree of the
global tree rooted by the focus and the context encodes the rest of the global
tree. On zippers, changing the focus is supported via local navigation operations
for moving one step down into the tree or up or aside into the context.

Zipper datatypes are directly representable as directed containers. We illus-
trate this on the example of zippers for non-empty lists. Such a zipper is a pair
of a list (the context) and a non-empty list (the suffix determined by the focus
position). Accordingly, by defining S = Nat x Nat, the shape of a zipper is a pair
(s0, $1) where sq is the shape of the context and s; is the shape of the suffix. For
positions, it is convenient to choose P (sg, 1) = {—S$0,...,s1} by allocating the
negative numbers in the interval for positions in the context and non-negative
numbers for positions in the suffix. The root position is 0{sg, s1} = 0, i.e., the
focus. The subshape for each position is given by (so,s1) 4 p = (so + p,s1 — p)
and translation of subshape positions by p & {sg,s1}p' =p+p'.

Fig. 4 gives an example of a non-empty list with focus with its shape fixed
to s = (5,6). It should be clear from the figure how the & operation works on
positions p = 4 and p’ = —7 to get back the position p & p’ = —3 in the initial
shape. The subshape operation | works as follows: s | p gives back a subshape
s'=1(9,2) and s | (p ® p') gives s = (2,9).

s =(9,2)

Fig. 4. The template for non-empty lists of length 12 focussed at position 5

4 Containers N Comonads = Directed Containers

Since not every functor can be represented by a container, there is no point in ask-
ing whether every comonad can be represented as a directed container. An exam-
ple of a natural comonad that is not a directed container is the cofree comonad on
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the finite powerset functor Pr (node-labelled nonwellfounded strongly-extensional
trees) where the carrier of this comonad is not a container (P is also not a con-
tainer). But, what about those comonads whose underlying functor is an inter-
pretation of a container? It turns out that any such comonad does indeed define
a directed container that is obtained as follows.

Given a comonad (D,¢,6) and a container C' = S < P such that D = [C]°,
the counit € and comultiplication § induce container morphisms

he: C —1d°
he =t <¢f =Teoe™
R:C—C-<C

R =t<¢’ ="m{C}{C}os™

using that [—]¢ is fully faithful. From (D, ¢, ) satisfying the laws of a comonad
we can prove that (C, h®, h%) satisfies the laws of a comonoid in Cont. Further,
we can define

slp=snd(tds)p

o {s} = ¢*{s}

p@ {s}p =¢ {s} (p,p)

and the comonoid laws further enforce the laws of the directed container for
(C,l,0,®).

It may seem that the maps ¢ and fstot® are not used in the directed container
structure, but ¢t : S — 1 contains no information (V{s}.t*s = %) and the
comonad/comonoid right unit law forces that V{s}.fst (¢’ s) = s, which gets
used in the proof of each of the five directed container laws. The latter fact is
quite significant. It tells us that the comultiplication § of any comonad whose
underlying functor is the interpretation of a container preserves the shape of a
given datastructure as the outer shape of the datastructure returned.

The situation is summarized as follows.

Proposition 9. Any comonad (D,e,0) and container C = S < P such that
D = [C]° determine a directed container [(D,e,d),C].

Proposition 10. [[C,|,0,®]%, C] = (C,],0,®).
Proposition 11. [[(D,¢,6),C1]% = (D, ¢,9).
These observations suggest the following theorem.

Proposition 12. The following is a pullback in CAT:

DCont v . Cont

{[—]]dcif.f. [[—}]le.f.

Comonads(Set) —— [Set, Set]

12



It is proved by first noting that a pullback is provided by Comonoids(Cont)
and then verifying that Comonoids(Cont) is isomorphic to DCont.

Sam Staton pointed it out to us that the proof of the first part only hinges on
Cont and [Set, Set] being monoidal categories and [—]° : Cont — [Set, Set]
being a fully faithful monoidal functor. Thus we actually establish a more general
fact, viz., that for any two monoidal categories C and D and a fully-faithful
monoidal functor F : C — D, the pullback of F along the forgetful functor
U : Comonoids(D) — D is Comonoids(C).

In summary, we have seen that the interpretation of a container carries the
structure of a comonad exactly when it extends to a directed container.

5 Containers N Monads = 7

Given that comonads whose underlying functor is the interpretation of a con-
tainer are the same as directed containers, it is natural to ask whether a similar
characterization is possible for monads whose underlying functor can be repre-
sented as a container. The answer is “yes”, but the additional structure is more
involved than that of directed containers.

Given a container C' = S < P, the structure (1, u) of a monad on the functor
T = [C]° is interdefinable with the following structure on C

— e: S (for the shape map for 7),

—e:[ls:S.(Ps— S)— S (for the shape map for p),

- N:II{s:S}.lIv: Ps— S.P(sev) - Ps and

-/ II{s: S} IIv: Ps — SIIp: P(sev).P(v(v \ {s}p)) (both for the
position map for u)

subject to three shape equations and five position equations. Perhaps not unex-
pectedly, this amounts to having a monoid structure on C'

To get some intuition, consider the monad structure on the datatype of lists.
The unit is given by singleton lists and multiplication is flattening a list of lists
by concatenation. For the list container S = Nat, P s = Fin's, we get that e = 1,
sev =73 r ,vp, v \ {s}p=[greatest p’ : Fins such that > ,.g, . vp" <p|
andv 7 {s}p=p=3_Fn (A {s}p) v p’’. The reason is that the shape of singleton
lists is e while flattening a list of lists with outer shape s and inner shape v p for
every position p in s results in a list of shape sev. For a position p in the shape
of the flattened list, the corresponding positions in the outer and inner shapes
of the given list of lists are v \ {s}p and v / {s}p.

For lack of space, we refrain from a more detailed discussion of this variation
of the concept of containers.

6 Related Work

We build on the theory of containers as developed by Abbott, Altenkirch and
Ghani [1, 4] to analyze strictly positive datatypes. Some generalizations of the
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concept of containers are the indexed containers of Altenkirch and Morris [5, 17]
and the quotient containers of Abbott et al. [2]. In our work we look at a special-
ization of containers rather than a generalization. Simple/indexed containers are
intimately related to strongly positive datatypes/families and simple/dependent
polynomial functors as appearing in the works of Dybjer [8], Moerdijk and Palm-
gren [16], Gambino and Hyland [9], Kock [15]. Girard’s normal functors [11] and
Joyal’s analytic functors [14] functors are similar to containers resp. quotient
containers, but only allow for finitely many positions in a shape.

Gambino and Kock [10] treat polynomial monads.

Abbott, Altenkirch, Ghani and McBride [3] have investigated derivatives of
datatypes that provide a systematic way to explain Huet’s zipper type [13].

Brookes and Geva [6] and later Uustalu with coauthors [20, 21, 12, 7] have
used comonads to analyze notions of context-dependent computation such as
dataflow computation, attribute grammars, tree transduction and cellular au-
tomata. Uustalu and Vene’s [22] observation of a connection between bottom-up
tree relabellings and containers with extra structure started our investigation
into directed containers.

7 Conclusions and Future Work

We introduced directed containers as a specialization of containers for describing
a certain class of datatypes (datastructures where every position determines a
sub-datastructure) that occur very naturally in programming. It was a pleasant
discovery for us that directed containers are an entirely natural concept also
from the mathematical point of view: they are the same as containers whose
interpretation carries the structure of a comonad.

In this paper, we could not discuss the equivalents of distributive laws be-
tween comonads, the composition of comonads, strict comonads and the product
of (strict) comonads in the directed container world. We have already done some
work around these concepts and constructions and plan to report our results in
an extended version of this paper and elsewhere.
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