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Abstract

We examine the interplay between computational effects and higher types. We do this by presenting a
normalization by evaluation algorithm for a language with function types as well as computational effects.
We use algebraic theories to treat the computational effects in the normalization algorithm in a modular
way. Our algorithm is presented in terms of an interpretation in a category of presheaves equipped with
partial equivalence relations. The normalization algorithm and its correctness proofs are formalized in
dependent type theory (Agda).
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1 Introduction

When studying computer programs it is often appropriate to consider them up to

some equations. In this paper we consider an equational theory for impure func-

tional programs. By finding a class of normal forms for this equational theory, we

are able to understand and manipulate the notions under study directly. Moreover,

it has been proposed that normalization algorithms are of use in partial evaluation:

if a program fragment with free variables is normalized at compile-time then it will

typically run faster.
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To be more precise, we introduce a small program in an ML-like language.

(fn (g:(unit -> unit) -> unit)

=> g (if recv()=0 then fn x => send 0 ; h x else fn y => send 1))

(fn (f:unit -> unit) => f () ; f ()) (∗)

Here recv:unit->bit and send:bit->unit are network communication primitives,

as in Concurrent ML [41], and h:unit->unit is a free identifier of function type.

Notice that we cannot naively compile and run this program to find out what it

does, because it has a free identifier h, and because its execution will depend on

what is received from the network.

Before we normalize the program, we translate it to an intermediate language

which makes the evaluation order clear. We also remove the bit type from the

program, since it complicates the normalization process and is orthogonal to what

we are investigating. (We return to the issue of sum types in §6). We elimi-

nate the need for a bit type by using algebraic operations, following [36]: we re-

place (if recv()=0 then M else N) by inp[M,N ], replace (send 0 ; M) by

out0[M ] and (send 1 ; M) by out1[M ]. Thus the program (∗) becomes(
fn g:((unit⇀ unit) ⇀ unit)⇒ inp[return fnx⇒ out0[hx], (†)

return fn y ⇒ out1[return 〈〉]] to f. g f
)(

fn f :(unit⇀ unit)⇒ f 〈〉 to y. f 〈〉
)

The intermediate language (§2) has a straightforward equational theory, includ-

ing β- and η-equality. The program (†) is not in normal form for these equations,

e.g. it has a β-redex. Our normalization algorithm yields the following program:

inp[out0[h 〈〉 tox. out0[h 〈〉 to y. return 〈〉]], out1[out1[return 〈〉]]] (‡)

So we discover what the program (∗) does: it inputs a bit from the network. If that

bit is 0 then it outputs 0, calls h, outputs 0, and calls h again. If the bit from the

network is 1 then it outputs 1 twice.

Notice how we are describing computational effects with an algebraic signature:

inp is a binary operation, and out0, out1 are unary operations. A crucial observation

is that the same normalization algorithm works if we begin with a different algebraic

signature of computational effects. Many other effects have been described in an

algebraic way, including non-determinism, probability, memory access [36,35,26] and

logic programming [43]. Our framework is a general one for all these examples.

1.1 The essence of normalization by evaluation

Syntax of 
intermediate 
language
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 semantics Reification

⊇We define our normalization algorithm in §3 using the

paradigm of normalization by evaluation (nbe). The

ideas of nbe were first discussed by Martin-Löf [24]

and later developed by Berger and Schwichtenberg [8].



There are two key ingredients: (1) a denotational se-

mantics of the programming language in an executable

type theory (Agda 3 ) in which terms are automatically normalized; (2) a “reifica-

tion” function which takes inhabitants of the denotational semantics back to terms

of the intermediate language in a sub-grammar of normal forms.

1.2 Components of our denotational semantics

There are three important components to our denotational semantics for nbe:

1. Semantics in a functor category : We follow the general paradigm of

structuring denotational semantics by finding a category and interpreting types as

objects and programs as morphisms between objects. Following [14,3,9], we base

our denotational semantics on the category SetRen of functors from a category Ren
of contexts and renamings between them, to the category of sets. This category

behaves very much like the category of sets, but has extra features that allow us to

take care over interpreting terms with free identifiers. The key feature of SetRen is

that there is a distinguished object Ren(τ,−) for each type τ of the intermediate

language, and this object behaves like a special set of identifiers of type τ .

2. A residualizing monad : Our intermediate language is a variation on Moggi’s

monadic metalanguage, and we structure our denotational semantics using a monad.

Following Plotkin and Power [35], we build the monad from operations in the al-

gebraic signature describing the computational effects. However, for nbe we must

add more into our monad: following Filinski’s pioneering work [13] and subsequent

developments [21,5], we also incorporate the effect of applying an identifier of func-

tion type to an argument. For instance, in the normal form (‡) above, although

the result of the call to h is ignored, the function call may produce side effects,

depending on what h stands for. We thus keep the ‘residual’ function call, which

cannot be normalized any further.

3. Using PERs to account for equations on effect terms: In addition to

operations in algebraic signatures, many computational effects are described with

additional equations specifying their computational behaviour. Following [9,33], we

accommodate such effects in our nbe algorithm by considering presheaves whose

codomains are equipped with partial equivalence relations (pers). This is a partic-

ularly elegant approach because from the perspective of the nbe algorithm, we can

naively work with sets, and then refer to the pers when justifying the correctness

of the algorithm.

1.3 Contributions

Our main contribution is to build a normalization algorithm for our effectful func-

tional language out of this semantic analysis. The three components of our denota-

tional semantics (§1.2) have not been combined before. By combining (1) and (2) we

3 Agda implementation of our nbe: https://github.com/danelahman/Normalization-By-Evaluation
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achieve a clean and modular mathematical account of Filinski’s ideas of residuation

in monads. By combining (2) and (3) we are able to analyze equations and normal-

ization at the level of effects (§5), separately from equations and normalization of

the functional aspects of the language.

We also present a proof of correctness of the normalization algorithm. Our

proof uses logical relations, and further exploits the tight connection between the

residualizing monad and the syntax of normal forms.
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2 A programming language with algebraic effects

We introduce the syntax and equational theory for a higher-order programming

language which incorporates computational effects using algebraic theories, follow-

ing [35]. Our language is based on the call-by-value paradigm. The evaluation order

is totally explicit, so it is more of an intermediate language than a front-end. The

language is based on Moggi’s monadic metalanguage [29], following the analysis by

Levy, Power and Thielecke [20] (see also [17,19,28,40]).

2.1 Algebraic effects

We describe simple effects involved in computation using algebraic signatures [36].

For example, we can describe the effects involved in input/output of bits over a fixed

communication channel with a binary operation inp and unary operations out0, out1.

The algebraic expression inp[M,N ] describes a computation that first reads a bit

from the channel and then proceeds as the computation M if it is 0, or as N if it

is 1. The expression out0[M ] describes a computation that outputs a bit 0 to the

channel and then proceeds as M .

For another example, we can describe the effects of non-determinism with a

binary operation ⊕, with the understanding that M ⊕N describes a computation

that behaves either as M or as N .

Formally, an algebraic signature consists of a set Op of operations together with

an assignment of arities ar : Op→ N. For input/output, let Op
def
= {inp, out0, out1}



and ar(inp)
def
= 2, ar(out0)

def
= 1, ar(out1)

def
= 1. For non-determinism, let Op

def
= {⊕}

and ar(⊕)
def
= 2.

One would typically impose equations, such as idempotency, commutativity and

associativity of ⊕. We postpone a discussion on this until §5. In §6 we discuss more

general kinds of algebraic theories involving value parameters and variable binding.

2.2 Extending algebraic effects to a call-by-value language with higher types

The algebraic analysis of effects involves a class of computations of unspecified type.

We now describe a typed language, for time being with product and function types:

σ, τ ∈ Ty ::= unit | σ ∗ τ | σ ⇀ τ .

We use a harpoon symbol for the function type σ ⇀ τ to emphasise that a function

may have side effects. (Moggi’s [29] notation for this is σ → T (τ). Conversely in

our language the thunking construction (unit⇀ (−)) is a monad.)

We have not included other types, such as sums or recursive types, because

our main aim in this paper is to present a clear underlying framework for nbe for

effectful languages with algebraic effects. We return to this in §6.

A typing context is a list of types annotated with variable names x, y, z. We

have no need to consider untyped terms, so we immediately provide a rule-based

definition of typed terms in context. Following [20], there are two typing judgements:

one for values Γ v̀ V : τ and one for producers Γ p̀ M : τ . The idea is that a value

is something that has no effects, whereas a producer may have side effects.

Γ, x : τ,Γ′ v̀ x : τ

Γ v̀ V1 : τ1 Γ v̀ V2 : τ2

Γ v̀ 〈V1, V2〉 : τ1 ∗ τ2

Γ, x : σ p̀ N : τ

Γ v̀ fnx:σ ⇒ N : σ ⇀ τ

Γ v̀ 〈〉 : unit

Γ v̀ V : τ1 ∗ τ2

Γ v̀ #i V : τi

Γ v̀ V : σ ⇀ τ Γ v̀ W : σ

Γ p̀ V W : τ

Γ v̀ V : τ

Γ p̀ returnV : τ

Γ p̀ M : σ Γ, x : σ p̀ N : τ

Γ p̀ M tox.N : τ

Γ p̀ M1 : τ . . . Γ p̀ Mn : τ

Γ p̀ opτ [M1, . . . ,Mn] : τ

There is an instance of the bottom-right rule for each n-ary operation op ∈ Op
and each type τ . For instance, with the input/output signature we have this syntax:

Γ p̀ M : τ Γ p̀ M : τ

Γ p̀ inp[M,N ] : τ

Γ p̀ M : τ

Γ p̀ out0[M ] : τ

Γ p̀ M : τ

Γ p̀ out1[M ] : τ

2.3 Equational theory

The equational theory of this language is built from the βη-equations of the λ-cal-

culus, the laws of Kleisli composition (e.g. [20,29]), and algebraicity [40, §3.3]. We



have elided the usual laws of reflexivity, symmetry, transitivity, and congruence.

Γ v̀ V1 : τ1 Γ v̀ V2 : τ2

Γ v̀ #i 〈V1, V2〉 ≡ Vi : τi

Γ v̀ V : τ1 ∗ τ2

Γ v̀ V ≡ 〈#1 V, #2 V 〉 : τ1 ∗ τ2

Γ v̀ V : unit

Γ v̀ V ≡ 〈〉 : unit

Γ, x : σ p̀ M : τ Γ v̀ V : σ

Γ p̀ (fnx:σ ⇒M)V ≡M [V/x] : τ

Γ v̀ V : σ ⇀ τ

Γ v̀ V ≡ fnx:σ ⇒ (V x) : σ ⇀ τ

Γ v̀ V : σ Γ, x : σ p̀ N : τ

Γ p̀ returnV tox.N ≡ N [V/x] : τ

Γ p̀ M : τ

Γ p̀ M ≡M tox. returnx : τ

Γ p̀ M : σ Γ, x : σ p̀ N : τ Γ, y : τ p̀ P : ρ

Γ p̀ (M tox.N) to y. P ≡M tox. (N to y. P ) : ρ

Γ p̀ M1 : σ . . .Γ p̀ Mn : σ Γ, x : σ p̀ N : τ

Γ p̀ opσ[M1, . . . ,Mn] tox.N ≡ opτ [M1 tox.N, . . . ,Mn tox.N ] : τ

2.4 Denotational semantics

We now recall the general programme of denotational semantics for the language

in §2.2–2.3 in a category with sufficient structure [29,20,35]. Given an algebraic

signature Op, a monad model is given by a category C with following data:

• a chosen cartesian closed structure, i.e. chosen finite products (including a termi-

nal object 1), and for all objects A and B an object [A ⇒ B] together with an

evaluation morphism ε : [A ⇒ B] × A → B such that for every f : C × A → B

there is a unique morphism λf : C → [A⇒ B] such that f = ε ◦ (λf × idA).

• a strong monad T on C, i.e. for each object A an object TA, and a morphism

η : A→ TA, and for all objects A and B a morphism str : A× TB → T (A×B),

and for each morphism f : A→ TB a morphism f∗ : TA→ TB (also called the

Kleisli extension of f), satisfying appropriate conditions (e.g. [29]).

• for each operation op ∈ Op with ar(op) = n, a natural transformation T-op :

T (−)n → T (−) between functors C→ C.

We interpret the intermediate language in a monad model by interpreting types

as objects and terms as morphisms. The interpretation of types as objects proceeds

as follows: JunitK def
= 1, Jτ1 ∗ τ2K

def
= Jτ1K × Jτ2K, Jσ ⇀ τK def

= [JσK ⇒ T JτK].
We interpret a context (x1 : τ1, . . . , xn : τn) as an object too, as the product of the

interpretations of its consituent types: J(x1 : τ1, . . . , xn : τn)K def
= Jτ1K × · · · × JτnK.

That is, a context is interpreted as the object of environments for that context.

Value typing judgments Γ v̀ V : τ are interpreted as morphisms JV Kv : JΓK→ JτK,
and producer typing judgments Γ p̀ M : τ as morphisms JMKp : JΓK −→ T JτK.



These morphisms are defined by induction on the structure of derivations:

JxKv
def
= πx

J#1 V Kv
def
= π1 ◦ JV Kv

J#2 V Kv
def
= π2 ◦ JV Kv

J〈V,W 〉Kv
def
= 〈JV Kv, JW Kv〉

J〈〉Kv
def
= 〈〉

Jfnx:σ ⇒ NKv
def
= λJNKp

JV W Kp
def
= ε ◦ 〈JV Kv, JW Kv〉

JreturnV Kp
def
= η ◦ JV Kv

JM tox.NKp
def
= JNK∗p ◦ str ◦ 〈id, JMKp〉

Jopτ [M1, . . . ,Mn]Kp
def
= T-op ◦ 〈JM1Kp, . . . , JMnKp〉

Proposition 2.1 (Soundness) In any monad model:

If Γ v̀ V ≡W : τ then JV Kv = JW Kv. If Γ p̀ M ≡ N : τ then JMKp = JNKp.

For a simple example of a monad model, let C be the category Set of sets

and functions between them. We can associate to any set A the least set T (A)

containing A and closed under the operations in Op. This yields a strong monad.

The Eilenberg-Moore algebras for this monad can be understood as sets A that are

equipped with a function An → A for each n-ary operation op ∈ Op. Unfortunately

this set-theoretic model is not good enough for nbe, informally, because it does not

support reification at higher types. We build a model suitable for nbe in §3.2.

3 Normalization by evaluation

The general programme of nbe proceeds in three steps, following Section 1.1: iden-

tifying normal forms (§3.1), building a model that supports a denotational semantics

(§3.2), and defining a reification from the model to the normal forms (§3.3).

3.1 Normal forms

The normal forms for our language are based on the η-long β-normal forms of simply

typed lambda calculus. We mutually define judgements of normal values (`nv ), normal

producers (`np ), atomic values (`av ) and atomic producers (`ap ).

Γ, x : τ,Γ′ `av x : τ

Γ `nv V1 : τ1 Γ `nv V2 : τ2

Γ `nv 〈V1, V2〉 : τ1 ∗ τ2

Γ, x : σ `np N : τ

Γ `nv fnx:σ ⇒ N : σ ⇀ τ

Γ `nv 〈〉 : unit

Γ `av V : τ1 ∗ τ2

Γ `av #i V : τi

Γ `av V : σ ⇀ τ Γ `nv W : σ

Γ `ap V W : τ

Γ `nv V : τ

Γ `np returnV : τ

Γ `ap M : σ Γ, x : σ `np N : τ

Γ `np M tox.N : τ

Γ `np M1 : τ . . . Γ `np Mn : τ

Γ `np opτ [M1, . . . ,Mn] : τ

The atomic judgements are an auxiliary notion that we use to define normal

judgements. Informally, atomic judgements are built from destructors (projections,

function application) and normal judgements are built from constructors (pairing,

abstraction). The only thing that can be done with an atomic producer is to force



its execution and substitute the result, using to. Atomic values can be substituted

for variables without denormalizing a term.

3.2 A model of set theory with identifiers

Our nbe algorithm works over programs with free variables, that is, open programs.

To accommodate this, we build a model of set theory in which there is a ‘set of

identifiers’ for each type. We build the model categorically, using the presheaf

construction, following [3,9,14]. (Nominal sets [32] are also related from a semantic

perspective.)

A category of contexts and renamings

Let Ren be the category whose objects are contexts of our language: lists of types,

informally annotated with variables. A morphism (σ1, . . . , σm) −→ (τ1, . . . , τn) is

given by a function f : m → n such that σi = τf(i) for 1 ≤ i ≤ m. Composition of

morphisms is composition of functions.

A category of presheaves

We will consider the category SetRen of (covariant) presheaves. The objects are

functors Ren → Set, and the morphisms are natural transformations. We under-

stand a functor F : Ren→ Set as assigning to each context a set which may depend

on the free variables in that context. The functorial action on morphisms accounts

for renamings of variables.

A helpful perspective is to think of this category as a model of intuitionistic set

theory (e.g. [23]). For any type τ there is a representable presheaf Ren(τ,−) which

may be thought of as a ‘set of identifiers’ labelled with the type τ . These identifiers

are pure: they cannot be manipulated or compared.

The category SetRen has products, sums and function spaces (e.g. [23, §III.6]).

• products: for presheaves F1, . . . , Fn we let (F1×· · ·×Fn)(Γ) = F1(Γ)×· · ·×Fn(Γ).

• coproducts: let (F1 + · · ·+ Fn)(Γ) = F1(Γ) ] · · · ] Fn(Γ).

• cartesian closure: for F, G ∈ SetRen, let [F ⇒ G](Γ) = SetRen(Ren(Γ,−)× F,G).

Syntactic presheaves

For any type τ we have six presheaves Ren→ Set built from the syntactic con-

structions in §2.2 and §3.1: presheaves of values (VTermsτ ), producers (PTermsτ ),

normal values (NVTermsτ ), atomic values (AVTermsτ ), normal producers (NPTermsτ )

and atomic producers (APTermsτ ). For example, VTermsτ (Γ)
def
= {V |Γ v̀ V : τ}.

Presheaf actions are given by variable renaming: we let VTermsτ (f)(V ) = V [f ].

A residualizing monad

The crux of our semantic analysis is our residualizing monad T on the presheaf

category SetRen. We begin with an abstract description of it, and follow with a

concrete inductive definition.



We briefly define a residualizing algebra to be a presheaf F : Ren→ Set together

with a natural transformation Fn → F for each n-ary operation in the signature

Op, and also a natural transformation APTermsτ × ([Ren(τ,−)⇒ F ])→ F for each

type τ . The algebraic structure from the signature interprets the effects in the

signature, and the additional structure describes sequencing of effects with atomic

producers. Recall that atomic producers are function calls involving free identifiers;

their effects are undetermined. With suitably defined algebra homomorphisms, we

arrive at a category which is monadic over SetRen. That is, the category of residu-

alizing algebras is the category of Eilenberg-Moore algebras for a strong monad T

on the category SetRen. (This follows from the ‘crude monadicity theorem’.)

The monad T has the following concrete inductive description. Let F : Ren →
Set be a presheaf. We define a new presheaf TF : Ren→ Set so that the sets TF (Γ)

are the least satisfying the following rules:

d ∈ F (Γ)

(T-return d) ∈ TF (Γ)

Γ `ap M : σ d ∈ TF (Γ, x:σ)

(M T-tox. d) ∈ TF (Γ)

d1 ∈ TF (Γ) . . . dn ∈ TF (Γ)

T-op(d1, . . . , dn) ∈ TF (Γ)

The functorial action uses the action of F and the renaming of atomic produc-

ers. Note the tight correspondence between the residualizing monad and normal

producers (§3.1): there is a natural isomorphism NPTermsτ ∼= T (NVTermsτ ) (see

also [21]). Another way to understand this monad is as the coproduct of the free

monad generated by the algebraic signature Op and the free monad generated by

T-to and T-return, as described by Ghani, Uustalu, Adámek and others [1,15].

Proposition 3.1 The category SetRen together with the residualizing monad T forms

a monad model in the sense of §2.4.

3.3 Reification and reflection

Recall that a nbe algorithm has two components: denotational semantics into the

model, and reification back to normal forms.

We define reification as two families of natural transformations:
v↓τ∈Ty: JτK→ NVTermsτ and p↓τ∈Ty: T JτK → NPTermsτ . To account for the con-

travariance at function types, the reification functions must be defined mutually

with reflection functions, v↑τ∈Ty: AVTermsτ → JτK and p↑τ∈Ty: APTermsτ → T JτK.

• v↓τ : JτK→ NVTermsτ is defined by induction on the structure of types τ :

v↓unitΓ d
def
= 〈〉

v↓τ1∗τ2Γ d
def
= 〈v↓τ1Γ (π1 d), v↓τ2Γ (π2 d)〉

v↓σ⇀τ
Γ d

def
= fnx:σ ⇒ (p↓τΓ,x:σ (ε 〈d, (v↑σΓ,x:σ x)〉))



• p↓τ : T JτK→ NPTermsτ is defined by induction on the structure of T JτK:

p↓τΓ (T-return d)
def
= return (v↓τΓ d)

p↓τΓ (M T-tox. d)
def
= M tox. (p↓τΓ,x:σ d)

p↓τΓ (T-op(d1, . . . , dn))
def
= opτ [p↓τΓ d1, . . . ,

p↓τΓ dn]

(Notice, (p↓τ ) is derived from the natural isomorphism NPTermsτ ∼= T (NVTermsτ ).)

• v↑τ : AVTermsτ → JτK is defined by induction on types τ :

v↑unitΓ V
def
= 〈〉

v↑τ1∗τ2Γ V
def
= 〈v↑τ1Γ (π1 V ), v↑τ2Γ (π2 V )〉

v↑σ⇀τ
Γ V

def
= λd. p↑τΓ,x:σ (V (v↓σΓ,x:σ d))

• p↑τ∈Ty: APTermsτ → T JτK is defined by p↑τΓ M
def
= M T-tox. (T-return (v↑τΓ,x:τ x)).

Since variables are atomic values, the reflection morphisms allow us to map from

the object of identifiers Ren(τ,−) into the semantic domain JτK, via the composite

Ren(τ,−) −→ AVTermsτ
v↑τ−−→ JτK.

3.4 Summary of the normalization algorithm

We now combine the denotational semantics with reification to build a normalization

algorithm.

Any context Γ = (x1 : τ1 . . . xn : τn) has an environment id-envΓ (in the set JΓKΓ)

in which variables are interpreted as identifiers: let id-envΓ
def
= 〈v↑τ1Γ x1, . . . ,

v↑τnΓ xn〉.
The normal form of a value judgement Γ v̀ V : τ is found by reifying the in-

terpretation JV Kv : JΓK→ JτK in the environment id-envΓ. Similarly the normal

form of a producer judgement Γ p̀ M : τ is found by reifying the interpretation

JMKp : JΓK→ T JτK in the environment id-envΓ:

nf(V )
def
= v↓τΓ (JV KvΓ(id-envΓ)) nf(M)

def
= p↓τΓ (JMKpΓ(id-envΓ))

We establish correctness of this normalization algorithm in Theorem 4.1.

Our normalization algorithm is based on a purely semantic analysis. Another

common method for normalization is based on exhaustively rewriting syntactic pro-

gram terms to compute their normal forms. To perform rewriting, one considers

the equations Γ v̀ V ≡ W : τ and Γ p̀ M ≡ N : τ as rewrite rules. Lindley

and Stark [22] have studied normalization for Moggi’s monadic metalanguage in

this setting. They developed a >>-lifting based proof method by building on the

strong normalization results for simply-typed lambda calculus based on reducibility

candidates (see also [11]).



3.5 A note on implementation

The algorithm in this section reduces normalization for the programming language

to evaluation in set theory. For this to be an effective procedure, we need to under-

stand the ‘category of sets’ in a constructive way. We do this using Agda [30], an

implementation of Martin-Löf’s type theory [25]. The structure of our implemen-

tation and its correctness proofs closely follow the presentation in this paper.

4 Correctness of the algorithm

We now show that the normalization algorithm we defined in §3 is correct. Our

proof has been formalized in Agda. Similarly to [14], the proof of correctness is

divided into three main theorems.

Theorem 4.1

(i) Normalization respects equivalence.

If Γ v̀ V ≡W : τ then nf(V ) = nf(W ). If Γ p̀ M ≡ N : τ then nf(M) = nf(N).

(ii) Normalization preserves normal forms.

If Γ `nv V : τ then nf(V ) = V . If Γ `np M : τ then nf(M) = M .

(iii) Terms are equivalent to their normal forms.

If Γ v̀ V : τ then Γ v̀ V ≡ nf(V ) : τ . If Γ p̀ M : τ then Γ p̀ M ≡ nf(M) : τ .

Item (i) follows immediately from soundness of semantics (Prop. 2.1 and 3.1).

Item (ii) is proved by induction on the derivations of normal values/producers. In

the remainder of this section we outline a proof of item (iii) using logical relations.

4.1 Relating values and producers with their denotations

We begin by defining Kripke logical relations between values/producers and their de-

notations: v�
τ
Γ ⊆ JτK(Γ)× VTermsτ (Γ) and p�

τ
Γ
⊆ (T JτK)(Γ)× PTermsτ (Γ).

We define them by induction: v�
τ on the structure of τ , p�

τ on the structure of T .

d v�
unit
Γ V

def⇐⇒ true

d v�
τ1∗τ2
Γ V

def⇐⇒ (π1 d v�
τ1
Γ #1 V ) ∧ (π2 d v�

τ2
Γ #2 V )

d v�
σ⇀τ
Γ V

def⇐⇒ ∀f ∈ Ren(Γ,Γ′).∀d′, V ′.
d′ v�

σ
Γ V ′ =⇒ ε (Jσ ⇀ τKf d, d′) p�

τ
Γ′ (V [f ])V ′

(T-return d) p�
τ
Γ
M

def⇐⇒ ∃V. Γ p̀ M ≡ returnV : τ ∧ d v�
τ
Γ V

(N T-tox. d) p�
τ
Γ
M

def⇐⇒ ∃P. Γ p̀ M ≡ N tox. P : τ ∧ d p�
τ
Γ,x : σ

P

(T-op(d1 . . . dn)) p�
τ
Γ
M

def⇐⇒ ∃M1 . . .Mn ∈ PTermsτ (Γ).

Γ p̀ M ≡ opτ [M1, . . . ,Mn] : τ ∧ d1 p�
τ
Γ
M1 ∧ . . . ∧ dn p�

τ
Γ
Mn



Proposition 4.2 The logical relations are invariant under equivalence: If d v�
τ
Γ V

and Γ v̀ V ≡W : τ then d v�
τ
Γ W . If d p�

τ
Γ
M and Γ p̀ M ≡ N : τ then d p�

τ
Γ
N .

Proposition 4.3 The logical relations are subobjects in SetRen. For f ∈ Ren(Γ,Γ′):

If d v�
τ
Γ V then JτKf (d) v�

τ
Γ′ V [f ]. If d p�

τ
Γ
M then (T JτK)f (d) p�

τ
Γ′ M [f ].

Proposition 4.4 The logical relations interact well with reification and reflection.

(i) If d v�
τ
Γ V then Γ v̀ (v↓τΓ d) ≡ V : τ . If d p�

τ
Γ
M then Γ p̀ (p↓τΓ d) ≡M : τ .

(ii) If Γ `av V : τ then (v↑τΓ V ) v�
τ
Γ V . If Γ `ap M : τ then (p↑τΓ M) p�

τ
Γ
M .

We extend logical relations to environments and simultaneous substitutions. For

any context Γ = (x1 : τ1, . . . , xn : τn), we let SubΓ
def
= VTermsτ1 × · · · × VTermsτn . An

element of SubΓ determines the substitution of a term for each variable in Γ. Given

a judgement Γ v̀ V : τ , let V [−] : SubΓ → VTermsτ be defined by substitution.

Similarly, given a producer Γ p̀ M : τ , we define M [−] : SubΓ → PTermsτ by substi-

tution. We now define v�
Γ⊆ JΓK×SubΓ as e v�

Γ
Γ′ ρ

def⇐⇒ ∀(x : τ) ∈ Γ. (e x) v�
τ
Γ′ (ρ x).

Proposition 4.5 (Fundamental lemma of logical relations) If Γ v̀ V : τ and

e v�
Γ
Γ′ ρ then (JV Kv e) v�

τ
Γ′ V [ρ]. If Γ p̀ M : τ and e v�

Γ
Γ′ ρ then (JMKp e) p�

τ
Γ′

M [ρ].

4.2 Proof of Theorem 4.1(iii)

We use the logical relations to show that terms are equivalent to their normal forms.

Suppose Γ v̀ V : τ . We will show that Γ v̀ V ≡ nf(V ) : τ . (Recall that nf(V )
def
=

v↓τΓ (JV KvΓ(id-envΓ)).) Using Prop. 4.4(ii), we deduce that identity environments

and substitutions are related by v�
Γ
Γ′ . By Prop. 4.5, (JV Kv id-envΓ) v�

τ
Γ V . From

Prop. 4.4(i) we conclude Γ v̀ V ≡ nf(V ) : τ , as required. The case for producers is

similar.

5 Equations and effects

The normalization process described in the previous sections is with respect to the

equations in §2.3. We now discuss how to accommodate equations between effect

terms.

5.1 Equations on effects

For a first example, the signature for non-determinism (⊕) is usually considered

together with the semilattice equations x⊕ x = x , x⊕ y = y ⊕ x , x⊕ (y ⊕ z) =

(x⊕ y)⊕ z. To capture this in our language, we extend the equality for producers

(Γ p̀ M ≡ N : τ , §2.3) by including these three equations at each type τ :

Γ p̀ M : τ

Γ p̀ M⊕M ≡M : τ

Γ p̀ M : τ Γ p̀ N : τ

Γ p̀ M⊕N ≡ N⊕M : τ

Γ p̀ M : τ Γ p̀ N : τ Γ p̀ P : τ

Γ p̀ M⊕(N⊕P ) ≡ (M⊕N)⊕P : τ



We also define equivalence relations on normal forms using the following three rules

together with reflexivity, symmetry, transitivity and congruence.

Γ `np M : τ

Γ `np M⊕M ≡M : τ

Γ `np M : τ Γ p̀ N : τ

Γ `np M⊕N ≡ N⊕M : τ

Γ `np M : τ Γ `np N : τ Γ `np P : τ

Γ `np M⊕(N⊕P ) ≡ (M⊕N)⊕P : τ

Our nbe algorithm (§3) respects these equations:

Theorem 5.1

(i) If Γ v̀ V ≡W : τ then Γ `nv nf(V ) ≡ nf(W ) : τ .

If Γ p̀ V ≡W : τ then Γ `np nf(M) ≡ nf(N) : τ .

(ii) If Γ `nv V : τ then nf(V ) = V . If Γ `np M : τ then nf(M) = M .

(iii) If Γ v̀ V : τ then Γ v̀ V ≡ nf(V ) : τ . If Γ p̀ M : τ then Γ p̀ M ≡ nf(M) : τ .

Although we do not have to change the nbe algorithm to respect the equiva-

lence relations, we have to refine the residualizing model to establish correctness

(Theorem 5.1). From a semantic perspective, we change the notion of residual-

izing algebra (§3.2), requiring that a residualizing algebra satisfies the semilattice

equations. This gives us a different residualizing monad, which is a quotient of the

monad in §3.2, so that we have an isomorphism (NPTermsτ/≡) ∼= T (NVTermsτ ).

From the perspective of implementation, however, the types of Agda are in-

tensional and they do not permit quotients by equivalence relations. To remedy

this we revisit the semantic framework. We understand a ‘set’ as an Agda type

equipped with a partial equivalence relation ≈ (per: symmetric, transitive rela-

tion), following Cubric, Dybjer, Scott [9] and Pitts [33, §C.1]. For example, the

type of functions [X ⇒ Y ] is equipped with the following per: f ≈X→Y g iff

∀x, x′ : X. x ≈X x′ =⇒ f(x) ≈Y g(x′). We are led to redo category theory in

this setting, so that a ‘hom-set’ is actually a type equipped with a per. For more

details, see [9] or our Agda implementation.

There is nothing specific about semilattices in our analysis. In general, we

accommodate equations on effects using the per on the residualizing monad. Also

importantly, the pers are not visible in the constructions of the normalization

algorithm. They only play a role in the formalization of the correctness argument

(Theorem 5.1).

We mention in passing an alternative way to arrive at a suitable model to ac-

commodate equations on effect terms: the setoid construction [7]. A setoid is a

type equipped with an equivalence relation (that is also reflexive: ∀x. x≈x). The

setoid model has a different cartesian closed structure: the setoid of functions be-

tween given setoids X and Y is {f : X → Y | x ≈X x′ =⇒ f(x) ≈Y f(x′)}. (This

is roughly the same as the domain of the per.) In a proof-relevant system like

Agda, a setoid-based implementation of the normalization algorithm would be lit-

tered with proof witnesses for all inhabitants of function types. Although the setoid

model is well behaved in many ways, the per construction is better for our purposes

because it yields an algorithm that is not complicated by proof obligations.



5.2 Normalization of effects

In the previous section we only identified normal forms up-to the equations on

effect terms. In specific situations we can do better. For example, consider the sig-

nature for a one-bit memory cell: Op
def
= {lookup, update0, update1}, ar(lookup)

def
= 2,

ar(update0)
def
= 1, ar(update1)

def
= 1, with the following equations [26,35]:

x = lookup[update0[x], update1[x]] updatei[updatej [x]] = updatej [x]

update0[lookup[x, y]] = update0[x] update1[lookup[x, y]] = update1[y]
(1)

The idea is that lookup[M,N ] is the program that reads the memory, continuing

as M or N depending on the result, and updatei[M ] writes i to the memory before

continuing as M .

Rather than equipping the normal producers with a per generated by these

equations, we can instead represent effect terms directly in normal form, following

Melliès [26]. We use an auxiliary judgement (`n
′

p ).

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[M,N ] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[update1[M ], N ] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[M, update0[N ]] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[update1[M ], update0[N ]] : τ

Γ `nv V : τ

Γ `n
′

p returnV : τ

Γ `ap M : σ Γ, x:σ `np N : τ

Γ `n
′

p M tox.N : τ

Recall that the residualizing monad is a coproduct of two monads. In the present

case we can understand it as a coproduct of the residualizing monad for no ef-

fects (§3.2), and the one-bit-state monad [{0, 1} ⇒ ({0, 1} × (−))]. Concretely, this

coproduct of monads is the following least fixed point (following the definition in

[16]):

TF = µG.
[
{0, 1} ⇒

(
{0, 1} ×

(
F +

∑
τ (APTermsτ × [Ren(τ,−)⇒ G])

))]
In this monad the quotient by the equations (1) is made in the type, and a per is

not needed. Categorically speaking, this monad is isomorphic to the monad with a

nontrivial per. Concretely, however, this tailored monad provides a nbe algorithm

that not only normalizes higher types, but also partially evaluates the imperative

commands as much as possible. For illustration, consider the program (†) in the

introduction, but with inp/out replaced by lookup/update. Rather than the normal

form (‡), our algorithm also normalizes the effects, minimizing the number of writes:

lookup[h 〈〉 tox. lookup[h 〈〉 to y. lookup[return 〈〉, return 〈〉],
update0[h 〈〉 to y. lookup[return 〈〉, return 〈〉]]],

return 〈〉].



6 Remarks on extensions to the language

In this paper we have considered a restricted language with just enough features to

demonstrate our contributions. While language features such as recursion and sum

types are very important, they can be dealt with by using standard techniques from

the literature. We briefly summarize the main ideas.

Recursion

Our nbe algorithm is guaranteed to terminate, because it is written in Agda.

Nonetheless, realistic programming languages have the potential for non-termination.

This leads us to the long-established connections between partial evaluation and nbe

[10,12]. Roughly speaking, in a language with recursion, each sub-expression should

be annotated with its ‘binding time’, to explain which parts of the program should

be normalized at compile time (since they are somehow assumed to terminate) and

which should not be touched until run time. Dybjer and Filinski [12,13] outline how

to accommodate this in a monadic metalanguage.

Sum types

Most practical programming languages have sum types. For instance, we might

have a type bit of bits with two constants (0, 1) and following typing rule with

equations:

Γ v̀ V : bit Γ p̀ M : τ Γ p̀ N : τ

Γ p̀ if V then M else N : τ

if i then M0 else M1 ≡Mi (i = 0, 1)

M ≡ if x then M [0/x] else M [1/x]
(2)

The semantic analysis based on presheaf categories has been extended to explain

nbe with sum types for pure languages without computational effects [2,6]. Filin-

ski [13] and Lindley [21] have discussed nbe for effectful languages with sums from

a more pragmatic perspective. The languages they consider type case expressions

as computations rather than as values, which allows them to use the residualizing

monad to treat pattern-matching on atomic values.

Base types and local effects

Our residualizing monad is a monad on a presheaf category. Various authors

use monads on presheaf categories to describe local effects and name generation,

including local store [27,35,37], π-calculus [42], and logic programming [43]. The

second author has recently developed a syntactic framework for these analyses,

based on a generalized kind of algebraic theory [28,44], which can be accommodated

in our semantic analysis (see also [27,37]). This framework allows us to move closer

to the original source program in our introduction, as follows.

We can add to our grammar for types two abstract base types: a type chan of

channels and a type bit of communication data. We can then modify our algebraic

signature for input/output effects so that the operations take parameters from chan,



specifying which channel to use for communication, and the input operation incor-

porates variable binding. This kind of signature is ‘algebraic’ in that it determines a

monad on a presheaf category [43]. For input/output, we have this concrete syntax.

Γ v̀ V : chan Γ, x : bit p̀ M : τ

Γ p̀ inp[V, x.M ] : τ

Γ v̀ V : chan Γ v̀ W : bit Γ p̀ M : τ

Γ p̀ out[V,W,M ] : τ

To allow manipulation of the data we add constants 0, 1 of type bit and also an

operation if then else to our algebraic signature. In this way the typing rule in (2)

arises from the algebraic signature of effects, not as an extra language construction.

The equations for if then else (2) can be understood as part of the algebraic theory

of the effects [44, §VC]. This suggests a new route to dealing with sum types in nbe,

purely by using algebraic effects. We are currently experimenting with different

implementations of the residualizing monad for this theory. We hope to recover a

standard nbe algorithm for booleans [4] by implementing the monad carefully.

Categorically, this line of work amounts to investigating the free closed Freyd

category on a Freyd category, in the terminology of [20,39]. Recall [20,39] that a

Freyd category comprises (C,K, J), where C is a category with finite products, K is a

symmetric premonoidal category [38], and J is an identity-on-objects functor C→ K
that strictly preserves symmetric premonoidal structure and whose image lies in the

centre of K. A Freyd category is closed if for all objects A the functor J(A × −) :

C → K has a right adjoint. In particular, to give a closed Freyd category is to

give a category with finite products and a strong monad T on it for which Kleisli

exponentials [A⇒ TB] exist (cf. [39]).

In this sense our investigations are analogous to the investigations by Cubric et

al. [9, §7] into decidability for the free cartesian closed category on a category with

finite products. However, whereas the βη-theory for free cartesian closed categories

is not necessarily decidable, our equational theory is more fine-grained, leading us

to make the following conjecture:

Let (C→ K) be a Freyd category where C is a free category with products on a set

of objects and the word problem for K is decidable. Then the word problem for

the free closed Freyd category on (C→ K) is decidable.

Handlers of algebraic effects

While algebraic effects give a general way for constructing impure computations,

recent developments suggest that it is also profitable to desconstruct computational

effects. These ‘effect handlers’ generalize the idea of exception handlers to all alge-

braic effects. (See e.g. [34,40,18].)

To keep things simple, we consider the signature with one unary effect, op. We

can add effect handlers for op to our language with the following term formation

rule.
Γ p̀ M : σ Γ, x : τ v̀ Hop : τ Γ, x : σ v̀ Hreturn : τ

Γ v̀ handleM with {op(x)⇒ Hop | return (x)⇒ Hreturn} : τ

For an intuition, let op(M) be a computation that first ‘beeps’ and then continues



as M . The expression handleM with {op(x)⇒ Hop | return (x)⇒ Hreturn} then

captures each of the beeps in M and replaces them with Hop. For instance, the

expression

(handleM with {op(x)⇒ λ〈〉. op(op(x〈〉)) | return (x)⇒ λ〈〉. x}) 〈〉

replaces each ‘beep’ in M with two beeps.

Mathematically, handler expressions reify the idea that the type (〈〉⇀ τ) is the

free algebra on τ generated by the unary operation op. This intuition suggests the

following equations: firstly, that the handlers are homomorphisms between unary

algebras:

Γ v̀ handle (returnV ) with {op(x)⇒ Hop | return (x)⇒ Hreturn}

≡ Hreturn[V/x] : τ

Γ v̀ handle (op(M)) with {op(x)⇒ Hop | return (x)⇒ Hreturn}

≡ Hop[(handleM withH)/x] : τ

and secondly, that the handlers provide unique mediating morphisms:

Γ, x : unit⇀ σ v̀ V [(λ〈〉. op[x〈〉])/x] ≡ Hop[(λ〈〉. V )/y] : τ

Γ, x : unit⇀ σ v̀

V ≡ handle (x 〈〉) with {op(y)⇒ Hop | return (z)⇒ V [(λ〈〉. return z)/x]} : τ

However, we conjecture that this equational theory is undecidable. This con-

jecture is based on the observation that computations of type unit are essentially

natural numbers (thinking of return 〈〉 as zero and op(M) as the successor of M).

Thus our system is close to Gödel’s System T, in which equality is undecidable

(assuming ‘uniqueness of recursors’: see [31]).

7 Summary

We have investigated normalization by evaluation for a language with higher types

and computational effects. The effects are specified by an algebraic signature, so

our algorithm works for any notion of computation that can be expressed this way.

A key contribution of our work is our clear and modular semantic analysis of

normalization by evaluation. At the heart of our analysis is the residualizing monad.

• It is a monad on a presheaf category. Following Altenkirch, Cubric, Fiore and

others [3,9,14], we use a presheaf category as an alternative to classical set theory

because we need to normalize open terms. The presheaf category provides us with

well-behaved ‘sets of free identifiers’, while supporting the standard approach to

denotational semantics using cartesian closed categories.

• The monad is built in a principled and modular way, using the operations and



equations in the algebraic theory that describes the computational effects, follow-

ing the ideas of Plotkin, Power and others [35,26].

• In addition to algebraic operations, the monad also incorporates additional alge-

braic structure describing residualizing function calls, following Filinski [13].

Our normalization algorithm is implemented in the dependently typed language

Agda, and also proved correct in Agda. To run our algorithm, we can naively think

of sets as Agda types, but in the correctness proof we more properly understand

sets as Agda types equipped with pers, following [9].
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