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We investigate an algebraic treatment of propositional refinement types for languages with
computational effects, and develop a refinement-typed fine-grain call-by-value (FGCBV) [5]
language for such refinements. Our work stems from an insight that describing computational
effects using algebraic theories Teff (following Plotkin and Power [6]) allows us to develop a
single framework to account for seemingly different effect specifications found in the literature.

The refinement type system

In our system, refinement types τ consist of base types b, product types τ1 × τ2 and function
types τ1

ψ
⇀ τ2. Effect refinements ψ are defined as a fragment of the modal µ-calculus:

ψ ::= [ ] | 〈op〉(ψ1, . . . , ψn) | ⊥ |ψ1 ∨ ψn |X |µX.ψ

Effect refinements are intended to represent specifications on computations, in terms of sets of
(equivalence classes of) algebraic terms, e.g., the operation modality 〈op〉(ψ1, . . . , ψn) describes
a set of algebraic terms op(t1, . . . , tn) which first perform the computational effect op and then,
depending on its outcome, continue as a computation ti satisfying the corresponding ψi.

Effect refinements come with a corresponding subtyping relation ψ1 v ψ2, built from rules
familiar from modal logic, e.g., ⊥ is the least element. The relation also includes rules describing
the interaction between ⊥&∨ and 〈op〉, stating that operation modalities are multilinear maps.

We also require the subtyping relation to respect the equations in Teff . Unfortunately,
simply translating the axioms of Teff to axioms between corresponding effect refinements is
not valid in general: problems arise when the axioms of Teff include non-linearity. So instead
we limit ourselves to only include derivable semi-linear equations, i.e., equations satisfying the
conditions in the premise of the rule below. For more discussion about when exactly one can
soundly extend algebraic operations on algebras to operations on powersets of algebras, see [1].

~x ` t = u derivable in Teff t linear in ~x V ars(u) ⊆ V ars(t)

t•[~ψ/~x] v u•[~ψ/~x]

(−)• is a translation induced by sending operations op to a corresponding modalities 〈op〉.
The terms in our system consist of both value terms V and producer terms M , as in FGCBV.

Well-typed terms are given by judgments Γ v̀ V : τ and Γ p̀ M : τ !ψ. Here we only present the
typing rules that make the interplay between effect refinements and producer terms explicit:

Γ v̀ V : τ
Γ p̀ retV : τ ! [ ]

Γ p̀ M1 : τ !ψ1 . . . Γ p̀ Mn : τ !ψn

Γ p̀ op(M1, . . . ,Mn) : τ ! 〈op〉(ψ1, . . . , ψn)

Γ p̀ M1 : τ1 !ψ1 Γ, x : τ1 p̀ M2 : τ2 !ψ2

Γ p̀ M1 tox : τ1 in M2 : τ2 !ψ1[ψ2]

Semantics

We give our system a two-level denotational semantics, based on fibred category theory.
We begin by assuming an adjunction model of FGCBV, i.e., a CCC V (e.g., Set, or ω-Cpo to

also accommodate recursion) and a strong adjunction F a U : Alg(Teff ,V)→ V between V and
the category of Teff -algebras in V. To model refinement types we assume a CCC R and a faithful
functor r : R→ V such that r strictly preserves the CC structure on R, r is a partially-ordered
bifibration, and r has fibre-wise small coproducts that are preserved by reindexing functors.
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To model effect refinements, we construct a separate bifibration U∗(r) : RefAlg→ Alg(Teff ,V),
by applying change of base to r along U . We interpret effect refinements ∆ ` ψ as functors

JψKA : RefAlgA ×
−−−−−→
RefAlgA → RefAlgA, separately for each algebra A from Alg(Teff ,V). For

closed effect refinements ` ψ, the interpretations for different algebras extend to a single endo-
functor JψK : RefAlg→ RefAlg that preserves the underlying algebras, i.e., U∗(r)◦ JψK = U∗(r).
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U

ll

J` τ : Ref(A)K ∈ ob(R) such that r(JτK) = JAK

JΓ v̀ V : τK : JΓK −→ JτK

JΓ p̀ M : τ !ψK : JΓK −→ (Û ◦ JψK ◦ F̂ )(JτK)

Notice that the interpretation makes use of the adjunction F̂ a Û , induced by the change of
base along U [2, Cor. 3.2.5]. Importantly for us, F̂ a Û sits over F a U in an appropriate sense.

Applications

For example, we can represent effect annotations ε from type-and-effect systems as suitable
fixed point refinements. Following Kammar and Plotkin [3], we can take ε to consist of a
set of algebraic operations (the effects permitted to occur in the program) and define the

corresponding effect refinement as ψε
def
= µX. [ ] ∨

∨
op∈ε〈op〉(X, . . . ,X). In addition, we can

equip our system with a relational semantics and validate effect-dependent optimizations, again
following [3], based on the algebraic properties determined by effect refinements ψ. However, as
our refinements also take the temporal structure of computation into account, we can further
validate more involved optimizations, such as dead-code elimination in stateful computation.

Our other examples include Hoare refinements corresponding to Hoare types from Hoare
Type Theory, and protocol refinements for I/O, similar to session types and trace effects.

Related work

The literature contains a range of work on modeling type-and-effect systems by various forms of
indexed monad-like structures. Our system is closest to that of Katsumata [4] whose parametric
effect monads are indexed by ordered monoids. A fundamental difference with our system is
that, rather than taking an abstract indexed-monad view of effect annotations, we obtain both
as derived constructs within a wider algebraic theory of effects. In particular, the corresponding
parametric effect monad is obtained with the monoid given by closed effect refinements ψ.
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