
Dependent Types and
Fibred Computational Effects

Danel Ahman1

(joint work with Gordon Plotkin1 and Neil Ghani2)

1LFCS, University of Edinburgh

2MSP Group, University of Strathclyde

January 22, 2016

Outline

Language design principles for combining

• dependent types (Π,Σ, IdA(V ,W), ...)

• computational effects (state, I/O, probability, recursion, ...)

Our work was guided by two problems

• effectful programs in types

• assigning types to effectful programs

In the end we want to

• have a mathematically natural story

• use established tools and methods

• cover a wide range of computational effects

If time permits

• integrating dependent- and effect-typing (Idris)

Effectful programs in types
(type-dependency in the presence of effects)

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency (z :C ` A(z)) needs to be “homomorphic”

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency (z :C ` A(z)) needs to be “homomorphic”

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency (z :C ` A(z)) needs to be “homomorphic”

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Other options are the monadic metalanguage and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for the treatment of sequential composition

• and also for integrating dependent- and effect-typing

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Other options are the monadic metalanguage and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for the treatment of sequential composition

• and also for integrating dependent- and effect-typing

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Other options are the monadic metalanguage and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for the treatment of sequential composition

• and also for integrating dependent- and effect-typing

Assigning types to effectful programs
(i.e., typing sequential composition)

Assigning types to effectful programs

Our problem: The standard typing rule for seq. composition

Γ c̀ M : F A Γ, x :A c̀ N(x) : C (x)

Γ c̀ M to x :A in N(x) : C (x)

is not correct any more because x can appear free in

C (x)

in the conclusion

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:

Γ c̀ M to x :A in N : M to x :A in C

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:

Γ c̀ M to x :A in N : M to x :A in C

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:

Γ c̀ M to x :A in N : M to x :A in C

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:

Γ c̀ M to x :A in N : M to x :A in C

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 3: In the monadic metalanguage one could also try:

Γ ` M : T A Γ, x :A ` N : T B(x)

Γ ` M to x :A in N : T (Σx : A.B(x))

But what makes this a principled solution?

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

Sidenote about coproducts of algebras

Note: Elements of C [2/x] + C [3/x] are not only inl c or inr c!

• e.g., consider another computation tree in C [2/x] + C [3/x]

lookup

lookup lookup

lookup inl inr inr

inr c2 c3 c ′3

lookupC [3/x]

c3 c ′3

• where C [2/x] + C [3/x]
def
= F

(
U(C [2/x]) + U(C [3/x])

)
/≡

• where c2 ∈ C [2/x] and c3, c
′
3 ∈ C [3/x], and

• where the red subtrees are made equal by ≡

Putting these ideas together
(a core dependently-typed calculus with comp. effects)

A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

• general computational effects

• a clear distinction between values and computations

• restricting free variables in seq. composition

• using a coproducts of algebras

• a mathematically natural model theory, using standard tools

A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• F A is the type of computations returning values of type A

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D

A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• F A is the type of computations returning values of type A

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Γ v̀ V : A
Γ c̀ returnV : F A

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

. . .

Γ ` C

Γ | z :C h̀ z : C

. . .

Γ v̀ V : A Γ | z :C h̀ K : D[V /x]

Γ | z :C h̀ 〈V ,K 〉 : Σx :A.D

Γ | z1 :C h̀ K : Σx :A.D1 Γ ` D2 Γ, x :A | z2 :D1 h̀ L : D2

Γ | z1 :C h̀ K to 〈x :A, z2 :D1〉 in L : D2

The title fibred comp. effects comes from Γ ` C and Γ ` D2

A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Γ c̀ M : F A

Γ, x :A c̀ N : C (x)

Γ, x :A c̀ 〈x ,N〉 : Σy :A.C (y)

Γ c̀ M to x :A in 〈x ,N〉 : Σy :A.C (y)

The proposed rule for the monadic metalanguage is justified by

Σx :A.F (B) ∼= F (Σx :A.B)

Categorical semantics
(fibrations and adjunctions)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we define a partial
interpretation function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we define a partial
interpretation function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Vp(A) −→ V{A}
• and the value Σ- and Π-types are interpreted as adjoints

ΣA a π∗A a ΠA

(ΣA is also required to be strong, i.e., support dep. elimination)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: ii) a split fibration q and a split fib. adj. F a U

B→

cod --

VPoo

p a

!!

{−}a

}}

F

**⊥ C

qnn

U

jj

B

1

OO

• we extend J−K so that it maps (if defined):

• a ctx. Γ and a comp. type C to an object JΓ;CK in CJΓK

• a ctx. Γ and a comp. term M to JΓ;MK : 1JΓK → U(Z) in VJΓK

• a ctx. Γ, a comp. type C and a hom. term K to
JΓ;C ;KK : JΓ;CK→ Z in CJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: ii) a split fibration q and a split fib. adj. F a U

B→

cod --

VPoo

p a

!!

{−}a

}}

F

**⊥ C

qnn

U

jj

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Cp(A) −→ C{A}
• and the comp. Σ- and Π-types are interpreted as adjoints

ΣA a π∗A a ΠA

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for a countable Lawvere theory L and Pfam : Fam(Set) −→ Set→

F̂L a ÛL : Fam(Mod(L, Set)) −→ Fam(Set)

• for a monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for a countable Lawvere theory L and Pfam : Fam(Set) −→ Set→

F̂L a ÛL : Fam(Mod(L, Set)) −→ Fam(Set)

• for a monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for a countable Lawvere theory L and Pfam : Fam(Set) −→ Set→

F̂L a ÛL : Fam(Mod(L, Set)) −→ Fam(Set)

• for a monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

• these last three examples are instances of a more general result:

for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for a CPO-enriched monad T : CPO −→ CPO with a least
algebraic operation Ω : 0 and reflexive coequalizers in CPOT

F̂T a ÛT : CFam(CPOT) −→ CFam(CPO)

allows us to treat general recursion as a computational effect

Γ, x :UC c̀ M : C

Γ c̀ µx :UC .M : C

(we get such monads from CPO-enriched Law. theories with Ω)

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

• these last three examples are instances of a more general result:

for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for a CPO-enriched monad T : CPO −→ CPO with a least
algebraic operation Ω : 0 and reflexive coequalizers in CPOT

F̂T a ÛT : CFam(CPOT) −→ CFam(CPO)

allows us to treat general recursion as a computational effect

Γ, x :UC c̀ M : C

Γ c̀ µx :UC .M : C

(we get such monads from CPO-enriched Law. theories with Ω)

Algebraic effects
(primitives for programming with side-effects)

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I ,O are pure, i.e., they do not contain U

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I ,O are pure, i.e., they do not contain U

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I ,O are pure, i.e., they do not contain U

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x ,y).Vop}op〉V , where V : A

Elimination: (comp. term version)

(equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x , y).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x ,y).Vop}op〉V , where V : A

Elimination: (comp. term version)

(equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x , y).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x ,y).Vop}op〉V , where V : A

Elimination: (comp. term version)

(equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x , y).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x ,y).Vop}op〉V , where V : A

Elimination: (comp. term version)

(equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x , y).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:

(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Encoding Plotkin-Pretnar handlers:

M handled with {opx(y) 7→ Mop}op to x :A in Mret

def
=

forceC

(
thunk

(
M to x :A in force〈UC ,...thunk (Mop)...〉 (thunkMret)

))
: C

Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• new and useful structure on comp. types (Σ-types)

• universes of value and comp. types (omitted)

• dep.-typed algebraic effects and handlers

• general recursion as comp. effect

• natural categorical semantics, using standard tools

• parametrised fibred computational effects and a principled
account of Brady’s resource-dependent effects in Idris (omitted)

Thank you for listening!

Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• new and useful structure on comp. types (Σ-types)

• universes of value and comp. types (omitted)

• dep.-typed algebraic effects and handlers

• general recursion as comp. effect

• natural categorical semantics, using standard tools

• parametrised fibred computational effects and a principled
account of Brady’s resource-dependent effects in Idris (omitted)

Thank you for listening!

Combining effect- and dependent-typing
(adding parameters/worlds/permissions/etc.)

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

• we extend our language with an effect-and-type system

• we build on [Atkey’09]’s parametrised notions of computation

• we take par. adjunctions as a primitive construction

• we make the effect annotations internal to our language

• we want a semantics for [Brady’13,’14]’s Effects DSL for Idris

We omit: Details of the accompanying denotational semantics

• based on fibred analogues of parametrised adjunctions, e.g.,

W
r
��

V
p
��

∫(
λX .WX × VX

)
F //

fst
((

C

q
ww

B B B

• in particular, we take W def
=

∫(
λX .VX

(
1X , !

∗
X (JSK)

))

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

• we extend our language with an effect-and-type system

• we build on [Atkey’09]’s parametrised notions of computation

• we take par. adjunctions as a primitive construction

• we make the effect annotations internal to our language

• we want a semantics for [Brady’13,’14]’s Effects DSL for Idris

We omit: Details of the accompanying denotational semantics

• based on fibred analogues of parametrised adjunctions, e.g.,

W
r
��

V
p
��

∫(
λX .WX × VX

)
F //

fst
((

C

q
ww

B B B

• in particular, we take W def
=

∫(
λX .VX

(
1X , !

∗
X (JSK)

))

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

Γ ` A Γ v̀ W : S
Γ ` FW A

Γ ` C Γ v̀ W : S

Γ ` UW C

with the resulting S-parametrised monad (EffM in Idris) given by

Γ ` TW1,W2 A
def
= UW1 (FW2 A)

The main changes we make to our language:

• typing judgment for comp. terms: Γ |W c̀ M : C

• returning values: Γ |W c̀ returnW V : FW A

• thunking computations: Γ v̀ thunk
C
W M : UW C

• forcing of thunks: Γ |W c̀ force
C
W V : C

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

Γ ` A Γ v̀ W : S
Γ ` FW A

Γ ` C Γ v̀ W : S

Γ ` UW C

with the resulting S-parametrised monad (EffM in Idris) given by

Γ ` TW1,W2 A
def
= UW1 (FW2 A)

The main changes we make to our language:

• typing judgment for comp. terms: Γ |W c̀ M : C

• returning values: Γ |W c̀ returnW V : FW A

• thunking computations: Γ v̀ thunk
C
W M : UW C

• forcing of thunks: Γ |W c̀ force
C
W V : C

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

Γ ` A Γ v̀ W : S
Γ ` FW A

Γ ` C Γ v̀ W : S

Γ ` UW C

with the resulting S-parametrised monad (EffM in Idris) given by

Γ ` TW1,W2 A
def
= UW1 (FW2 A)

The main changes we make to our language:

• typing judgment for comp. terms: Γ |W c̀ M : C

• returning values: Γ |W c̀ returnW V : FW A

• thunking computations: Γ v̀ thunk
C
W M : UW C

• forcing of thunks: Γ |W c̀ force
C
W V : C

Fibred parametrised comp. effects

Aim: We can explain [Brady’14]’s resource-dependent effects

Example: We will look at the prototypical example of:

• locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

Γ | acquired c̀ lookup : Facquired String

Γ | acquired c̀ updateV : Facquired 1

Γ | acquired c̀ releaseLock : Freleased Bool

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

Γ | released c̀ acquireLock : F??? Bool

Fibred parametrised comp. effects

Aim: We can explain [Brady’14]’s resource-dependent effects

Example: We will look at the prototypical example of:

• locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

Γ | acquired c̀ lookup : Facquired String

Γ | acquired c̀ updateV : Facquired 1

Γ | acquired c̀ releaseLock : Freleased Bool

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

Γ | released c̀ acquireLock : F??? Bool

Fibred parametrised comp. effects

Aim: We can explain [Brady’14]’s resource-dependent effects

Example: We will look at the prototypical example of:

• locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

Γ | acquired c̀ lookup : Facquired String

Γ | acquired c̀ updateV : Facquired 1

Γ | acquired c̀ releaseLock : Freleased Bool

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

Γ | released c̀ acquireLock : F??? Bool

Fibred parametrised comp. effects

Aim: We can explain [Brady’14]’s resource-dependent effects

Example: We will look at the prototypical example of:

• locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

Γ | acquired c̀ lookup : Facquired String

Γ | acquired c̀ updateV : Facquired 1

Γ | acquired c̀ releaseLock : Freleased Bool

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

Γ | released c̀ acquireLock : F??? Bool

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define
the more dependently-parametrised monad-like functor as

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

) def
= UW1 (Σx :A.(FW2 1))

using the comp. Σ-types to quantify over the possible outcomes

A2b: We can then specify the lock acquiring generic effect as

Γ | released c̀ acquireLock : Σx :Bool.(F(if x then acquired else released) 1)

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define
the more dependently-parametrised monad-like functor as

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

) def
= UW1 (Σx :A.(FW2 1))

using the comp. Σ-types to quantify over the possible outcomes

A2b: We can then specify the lock acquiring generic effect as

Γ | released c̀ acquireLock : Σx :Bool.(F(if x then acquired else released) 1)

Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms

Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms

Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms

