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Outline

Language design principles for combining

• dependent types (Π,Σ, IdA(V ,W ), ...)

• computational effects (state, I/O, probability, recursion, ...)

Our work was guided by two problems

• effectful programs in types

• assigning types to effectful programs

In the end we want to

• have a mathematically natural story

• use established tools and methods

• cover a wide range of computational effects

If time permits

• integrating dependent- and effect-typing (Idris)



Effectful programs in types
(type-dependency in the presence of effects)



Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x ] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x ] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency ( z :C ` A(z) ) needs to be “homomorphic”



Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x ] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x ] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency ( z :C ` A(z) ) needs to be “homomorphic”



Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x ] if M is an effectful program?

A1: In this work we say no

• type-checking should only depend on static information

• e.g., how would one compute A[receive(y .M)/x ] ?

• we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

• lifting effect operations from terms to types, e.g., receive(y .A)

• similarities with ref. types and op. modalities [A.,Plotkin’15]

• type-dependency ( z :C ` A(z) ) needs to be “homomorphic”



Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Other options are the monadic metalanguage and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for the treatment of sequential composition

• and also for integrating dependent- and effect-typing
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Assigning types to effectful programs
(i.e., typing sequential composition)



Assigning types to effectful programs

Our problem: The standard typing rule for seq. composition

Γ c̀ M : F A Γ, x :A c̀ N(x) : C (x)

Γ c̀ M to x :A in N(x) : C (x)

is not correct any more because x can appear free in

C (x)

in the conclusion



Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:

Γ c̀ M to x :A in N : M to x :A in C

But then comp. types contain exactly the terms we want to type!
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Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C , i.e.:

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., in monadic parsing of well-typed syntax (case of functions)

· c̀ parseFun : F (Σy1.Σy2.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Option 3: In the monadic metalanguage one could also try:

Γ ` M : T A Γ, x :A ` N : T B(x)

Γ ` M to x :A in N : T (Σx : A.B(x))

But what makes this a principled solution?



Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 3: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x :Nat c̀ N : C )

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x ] at type C [2/x ] or N[3/x ] at type C [3/x ]

Idea: M denotes an element of the coproduct of algebras

C [2/x ] + C [3/x ]
def
= F

(
U
(
C [2/x ]

)
+ U

(
C [3/x ]

))/
≡
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Sidenote about coproducts of algebras

Note: Elements of C [2/x ] + C [3/x ] are not only inl c or inr c!

• e.g., consider another computation tree in C [2/x ] + C [3/x ]

lookup

lookup lookup

lookup inl inr inr

inr c2 c3 c ′3

lookupC [3/x]

c3 c ′3

• where C [2/x ] + C [3/x ]
def
= F

(
U(C [2/x ]) + U(C [3/x ])

)
/≡

• where c2 ∈ C [2/x ] and c3, c
′
3 ∈ C [3/x ], and

• where the red subtrees are made equal by ≡



Putting these ideas together
(a core dependently-typed calculus with comp. effects)



A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

• general computational effects

• a clear distinction between values and computations

• restricting free variables in seq. composition

• using a coproducts of algebras

• a mathematically natural model theory, using standard tools



A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W ) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• F A is the type of computations returning values of type A

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D



A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W ) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• F A is the type of computations returning values of type A

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D



A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!
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A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z ] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms
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A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Γ v̀ V : A
Γ c̀ returnV : F A

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

. . .

Γ ` C

Γ | z :C h̀ z : C

. . .

Γ v̀ V : A Γ | z :C h̀ K : D[V /x ]

Γ | z :C h̀ 〈V ,K 〉 : Σx :A.D

Γ | z1 :C h̀ K : Σx :A.D1 Γ ` D2 Γ, x :A | z2 :D1 h̀ L : D2

Γ | z1 :C h̀ K to 〈x :A, z2 :D1〉 in L : D2

The title fibred comp. effects comes from Γ ` C and Γ ` D2



A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Γ c̀ M : F A

Γ, x :A c̀ N : C (x)

Γ, x :A c̀ 〈x ,N〉 : Σy :A.C (y)

Γ c̀ M to x :A in 〈x ,N〉 : Σy :A.C (y)

The proposed rule for the monadic metalanguage is justified by

Σx :A.F (B) ∼= F (Σx :A.B)



Categorical semantics
(fibrations and adjunctions)



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we define a partial
interpretation function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK
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Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Vp(A) −→ V{A}
• and the value Σ- and Π-types are interpreted as adjoints

ΣA a π∗A a ΠA

(ΣA is also required to be strong, i.e., support dep. elimination)



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
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• we extend J−K so that it maps (if defined):

• a ctx. Γ and a comp. type C to an object JΓ;CK in CJΓK

• a ctx. Γ and a comp. term M to JΓ;MK : 1JΓK → U(Z ) in VJΓK

• a ctx. Γ, a comp. type C and a hom. term K to
JΓ;C ;KK : JΓ;CK→ Z in CJΓK
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Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for a countable Lawvere theory L and Pfam : Fam(Set) −→ Set→

F̂L a ÛL : Fam(Mod(L, Set)) −→ Fam(Set)

• for a monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT ) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)



Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for a countable Lawvere theory L and Pfam : Fam(Set) −→ Set→
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R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)



Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

• these last three examples are instances of a more general result:

for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for a CPO-enriched monad T : CPO −→ CPO with a least
algebraic operation Ω : 0 and reflexive coequalizers in CPOT

F̂T a ÛT : CFam(CPOT ) −→ CFam(CPO)

allows us to treat general recursion as a computational effect

Γ, x :UC c̀ M : C

Γ c̀ µx :UC .M : C

(we get such monads from CPO-enriched Law. theories with Ω)
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Algebraic effects
(primitives for programming with side-effects)



Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I ,O are pure, i.e., they do not contain U

op : (xi : I ) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi ] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi ])
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What about handlers?

We ensure that K ’s behave like homomorphisms via

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z ] = op

D
V

(
x .K [M/z ]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: so can we accommodate?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level
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One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I )−→O〉

Introduction: force 〈A,{(x ,y).Vop}op〉V , where V : A

Elimination: (comp. term version)

(equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x , y).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)
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One (possible) way forward with handlers

User-defined algebra type:

(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I )−→O〉

Encoding Plotkin-Pretnar handlers:

M handled with {opx(y) 7→ Mop}op to x :A in Mret

def
=

forceC

(
thunk

(
M to x :A in force〈UC ,...thunk (Mop)...〉 (thunkMret)

))
: C



Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• new and useful structure on comp. types (Σ-types)

• universes of value and comp. types (omitted)

• dep.-typed algebraic effects and handlers

• general recursion as comp. effect

• natural categorical semantics, using standard tools

• parametrised fibred computational effects and a principled
account of Brady’s resource-dependent effects in Idris (omitted)

Thank you for listening!
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Combining effect- and dependent-typing
(adding parameters/worlds/permissions/etc.)



Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

• we extend our language with an effect-and-type system

• we build on [Atkey’09]’s parametrised notions of computation

• we take par. adjunctions as a primitive construction

• we make the effect annotations internal to our language

• we want a semantics for [Brady’13,’14]’s Effects DSL for Idris

We omit: Details of the accompanying denotational semantics

• based on fibred analogues of parametrised adjunctions, e.g.,

W
r
��

V
p
��

∫(
λX .WX × VX

)
F //

fst
((

C

q
ww

B B B

• in particular, we take W def
=

∫(
λX .VX

(
1X , !

∗
X (JSK)

))
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Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

Γ ` A Γ v̀ W : S
Γ ` FW A

Γ ` C Γ v̀ W : S

Γ ` UW C

with the resulting S-parametrised monad (EffM in Idris) given by

Γ ` TW1,W2 A
def
= UW1 (FW2 A)

The main changes we make to our language:

• typing judgment for comp. terms: Γ |W c̀ M : C

• returning values: Γ |W c̀ returnW V : FW A

• thunking computations: Γ v̀ thunk
C
W M : UW C

• forcing of thunks: Γ |W c̀ force
C
W V : C
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Fibred parametrised comp. effects

Aim: We can explain [Brady’14]’s resource-dependent effects

Example: We will look at the prototypical example of:

• locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

Γ | acquired c̀ lookup : Facquired String

Γ | acquired c̀ updateV : Facquired 1

Γ | acquired c̀ releaseLock : Freleased Bool

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

Γ | released c̀ acquireLock : F??? Bool
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Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!



Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!



Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A1: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

)
and specify the lock acquiring generic effect as

Γ ` acquireLock : Treleased

(
(x :Bool).if x then acquired else released

)
• a natural generalisation of the functor part of fib. par. monads

• this is the approach that [Brady’14] took for Idris

• but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!



Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define
the more dependently-parametrised monad-like functor as

Γ v̀ W1 : S Γ ` A Γ, x :A v̀ W2 : S

Γ ` TW1

(
(x :A).W2

) def
= UW1 (Σx :A.(FW2 1))

using the comp. Σ-types to quantify over the possible outcomes

A2b: We can then specify the lock acquiring generic effect as

Γ | released c̀ acquireLock : Σx :Bool.(F(if x then acquired else released) 1)
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Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms



Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms



Parametrised fibred algebraic effects

Parametrised effect theories:

• we consider signatures of typed operation symbols

xw :S ` I xw :S , xin : I ` O xw :S , xin : I , xin :O v̀ Wout : S

opxw,xin,xout
: I −→ O,Wout

• equipped with equations on derivable effect terms

Algebraic operations:

Γ v̀ V : I [W /xw] Γ ` C Γ, x :O[W /xw,V /xin] |Wout[W /xw, ...] c̀ M : C

Γ |W c̀ op
C
V (x .M) : C

Generic effects:
Γ v̀ V : I [W /xw]

Γ |W c̀ genopV : Σ x :O[W /xw,V /xin] .FWout[W /xw,V /xin,x/xout] 1

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W ’s with order/morphisms


