Dependent Types and Fibred Computational Effects

Danel Ahman ${ }^{1}$

(joint work with Gordon Plotkin ${ }^{1}$ and Neil Ghani ${ }^{2}$)

${ }^{1}$ LFCS, University of Edinburgh
${ }^{2}$ MSP Group, University of Strathclyde

January 22, 2016

Outline

Language design principles for combining

- dependent types
$\left(\Pi, \Sigma, \operatorname{ld}_{A}(V, W), \ldots\right)$
- computational effects (state, I/O, probability, recursion, ...)

Our work was guided by two problems

- effectful programs in types
- assigning types to effectful programs

In the end we want to

- have a mathematically natural story
- use established tools and methods
- cover a wide range of computational effects

If time permits

- integrating dependent- and effect-typing (Idris)

Effectful programs in types

(type-dependency in the presence of effects)

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:

$$
x: \operatorname{Nat} \vdash A(x) \stackrel{\text { def }}{=} \text { if }(x \bmod 2==0) \text { then String else Char }
$$

Q: Should we allow $A[M / x]$ if M is an effectful program?

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:

$$
x: \text { Nat } \vdash A(x) \stackrel{\text { def }}{=} \text { if }(x \bmod 2==0) \text { then String else Char }
$$

Q: Should we allow $A[M / x]$ if M is an effectful program?
A1: In this work we say no

- type-checking should only depend on static information
- e.g., how would one compute $A[$ receive $(y . M) / x]$?
- we recover dependency on effectful computations via thunks

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:

$$
x: \operatorname{Nat} \vdash A(x) \stackrel{\text { def }}{=} \text { if }(x \bmod 2==0) \text { then String else Char }
$$

Q: Should we allow $A[M / x]$ if M is an effectful program?
A1: In this work we say no

- type-checking should only depend on static information
- e.g., how would one compute $A[$ receive $(y . M) / x]$?
- we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes

- lifting effect operations from terms to types, e.g., receive (y. A)
- similarities with ref. types and op. modalities [A.,Plotkin'15]
- type-dependency $(z: \underline{C} \vdash A(z))$ needs to be "homomorphic"

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

- value types $\Gamma \vdash A$
- computation types $\Gamma \vdash \underline{C}$ (MLTT + thunks $+\ldots$)
- where Γ contains only value variables $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

- value types $\Gamma \vdash A$
- computation types $\Gamma \vdash \underline{C}$
- where Γ contains only value variables $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$

Note: Other options are the monadic metalanguage and FGCBV

- but basing the work on CBPV/EEC gives a more general story
- especially for the treatment of sequential composition
- and also for integrating dependent- and effect-typing

Assigning types to effectful programs

(i.e., typing sequential composition)

Assigning types to effectful programs

Our problem: The standard typing rule for seq. composition

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma, x: A \vdash_{c} N(x): \underline{C}(x)}{\Gamma \vdash_{c} M \text { to } x: A \operatorname{in~} N(x): \underline{C}(x)}
$$

is not correct any more because x can appear free in

$$
\underline{C}(x)
$$

in the conclusion

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.:

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{\bar{c}} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \operatorname{in} N: \underline{C}}
$$

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.:

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{\bar{c}} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \operatorname{in} N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., in monadic parsing of well-typed syntax (case of functions)
- tr $_{c}$ parseFun : $F\left(\Sigma y_{1} \cdot \Sigma y_{2}\right.$.LangSyntax (fun $\left.\left.y_{1} y_{2}\right)\right)$
$\left.x: \Sigma y_{1} . \Sigma y_{2} . \operatorname{LangSyntax(fun} y_{1} y_{2}\right)$ 厄 $\operatorname{parseFunArg:~} F($ LangSyntax $(f$ st $x))$

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.:

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., in monadic parsing of well-typed syntax (case of functions)
$\cdot \iota_{c}$ parseFun : $\left.F\left(\Sigma y_{1} . \Sigma y_{2} . \operatorname{LangSyntax(fun~} y_{1} y_{2}\right)\right)$
$\left.x: \Sigma y_{1} \cdot \Sigma y_{2} . \operatorname{LangSyntax(fun} y_{1} y_{2}\right) \ell_{c}$ parseFunArg: $F($ LangSyntax $(f$ st $x))$

Option 2: We could lift seq. composition to type level:

$$
\Gamma t_{c} M \text { to } x: A \text { in } N: M \text { to } x: A \text { in } \underline{C}
$$

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.:

$$
\frac{\Gamma \hbar_{c} M: F A \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{七} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., in monadic parsing of well-typed syntax (case of functions)
- t_{c} parseFun : $F\left(\Sigma y_{1} \cdot \Sigma y_{2} \cdot \operatorname{LangSyntax}\left(\right.\right.$ fun $\left.\left.y_{1} y_{2}\right)\right)$
$x: \sum y_{1} . \sum y_{2}$.LangSyntax(fun $\left.y_{1} y_{2}\right)$ tc parseFunArg : $F($ LangSyntax $(f s t x))$
Option 3: In the monadic metalanguage one could also try:

$$
\frac{\Gamma \vdash M: T A \quad \Gamma, x: A \vdash N: T B(x)}{\Gamma \vdash M \text { to } x: A \text { in } N: T(\Sigma x: A \cdot B(x))}
$$

But what makes this a principled solution?

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.

For example, consider the stateful program (for x : Nat $t_{c} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \operatorname{lookup}(\text { return 2, return 3) to } x: \text { Nat in } N
$$

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.

For example, consider the stateful program (for x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \operatorname{lookup}(\text { return 2, return 3) to } x: \text { Nat in } N
$$

After looking up the bit, this program evaluates as either

$$
N[2 / x] \text { at type } \underline{C}[2 / x] \text { or } N[3 / x] \text { at type } \underline{C}[3 / x]
$$

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.

For example, consider the stateful program (for x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \quad \stackrel{\text { def }}{=} \operatorname{lookup}(\text { return 2, return 3) to } x: \text { Nat in } N
$$

After looking up the bit, this program evaluates as either

$$
N[2 / x] \text { at type } \underline{C}[2 / x] \text { or } N[3 / x] \text { at type } \underline{C}[3 / x]
$$

Idea: M denotes an element of the coproduct of algebras

$$
\underline{C}[2 / x]+\underline{C}[3 / x] \stackrel{\text { def }}{=} F(U(\underline{C}[2 / x])+U(\underline{C}[3 / x])) / \equiv
$$

Sidenote about coproducts of algebras

Note: Elements of $\underline{C}[2 / x]+\underline{C}[3 / x]$ are not only inl c or inr c !

- e.g., consider another computation tree in $\underline{C}[2 / x]+\underline{C}[3 / x]$

- where $\underline{C}[2 / x]+\underline{C}[3 / x] \stackrel{\text { def }}{=} F(U(\underline{C}[2 / x])+U(\underline{C}[3 / x]))_{/ \equiv}$
- where $c_{2} \in \underline{C}[2 / x]$ and $c_{3}, c_{3}^{\prime} \in \underline{C}[3 / x]$, and
- where the red subtrees are made equal by \equiv

Putting these ideas together

(a core dependently-typed calculus with comp. effects)

A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

- general computational effects
- a clear distinction between values and computations
- restricting free variables in seq. composition
- using a coproducts of algebras
- a mathematically natural model theory, using standard tools

A computational dep.-typed language

Value types: MLTT's types + thunks $+\ldots$
$A, B::=$ Nat $|1| \Pi x: A \cdot B|\Sigma x: A \cdot B| I d_{A}(V, W)|\cup \underline{C}| \ldots$

- $U \underline{C}$ is the type of thunked (i.e., suspended) computations

A computational dep.-typed language

Value types: MLTT's types + thunks $+\ldots$
$A, B::=$ Nat $|1| \Pi_{x}: A \cdot B|\Sigma x: A \cdot B| I d_{A}(V, W)|U \underline{C}| \ldots$

- $U \underline{C}$ is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC's comp. types

$$
\underline{C}, \underline{D}::=F A|\Pi x: A \cdot \underline{C}| \Sigma x: A \cdot \underline{C}
$$

- $F A$ is the type of computations returning values of type A
- $\Pi x: A . \underline{C}$ is the type of dependent effectful functions
- it generalises CBPV's and EEC's computational function type $A \rightarrow \underline{C}$ and product type $\underline{C} \times \underline{D}$
- $\Sigma x: A . \underline{C}$ is the generalisation of coproducts of algebras
- it generalises EEC's computational tensor type $A \otimes \underline{C}$ and sum type $\underline{C}+\underline{D}$

A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using judgment $\Gamma \vdash_{v} V: A$

A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using judgment $\Gamma \vdash_{v} V: A$

Computation terms: dep.-typed version of CBPV/EEC c. terms

```
M,N ::= force V
            return V
            M to x:A in N
            \lambdax:A.M
            MV
            \V,M\rangle (comp.\Sigma intro.)
```


A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using judgment $\Gamma \vdash_{v} V: A$

Computation terms: dep.-typed version of CBPV/EEC c. terms

$M, N::$	force V
	return V
	M to $x: A$ in N
	$\lambda x: A . M$
	$M V$
	$\langle V, M\rangle$
M to $\langle x: A, z: \underline{C}\rangle$ in K	
	(comp. Σ intro.)
	(comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the intended evaluation order, e.g., as in

$$
\Gamma t_{c}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the intended evaluation order, e.g., as in

$$
\Gamma t_{c}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

Homomorphism terms: dep.-typed version of EEC's linear terms

$$
\begin{aligned}
K, L::= & z \\
\mid & K \text { to } x: A \text { in } M \\
\mid & \lambda x: A \cdot K \\
\mid & K V \\
\mid & \langle V, K\rangle \\
\mid & K \text { to }\langle x: A, z: \underline{C}\rangle \text { in } L
\end{aligned}
$$

(linear comp. vars.)

$$
\langle V, K\rangle \quad \text { (comp- } \sum \text { intro.) }
$$

$$
\begin{array}{r}
\left(\text { comp- } \sum\right. \text { intro.) } \\
\text { (comp- } \text { elim.) }
\end{array}
$$

Computation and homomorphism terms are typed using judgments

- 「t $M: \underline{C}$
- $\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \quad$ (linear in z; comp. bound to z happens first)

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the intended evaluation order, e.g., as in

$$
\Gamma \operatorname{tr}_{c}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

Homomorphism terms: dep.-typed version of EEC's linear terms

$$
\begin{aligned}
K, L::= & z \\
\mid & K \text { to } x: A \text { in } M \\
\mid & \lambda x: A \cdot K \\
\mid & K V \\
& \langle V, K\rangle \\
& K \text { to }\langle x: A, z: \underline{C}\rangle \text { in } L
\end{aligned}
$$

(linear comp. vars.)

$$
\langle V, K\rangle \quad \text { (comp- } \sum \text { intro.) }
$$

$$
\begin{array}{r}
\left(\text { comp- } \sum\right. \text { intro.) } \\
\text { (comp- } \text { elim.) }
\end{array}
$$

Computation and homomorphism terms are typed using judgments

- 「tı $M: \underline{C}$- $\Gamma \mid z: \underline{C} \hbar^{万} K: \underline{D} \quad$ (linear in z; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

$$
\frac{\Gamma \hbar_{v} V: A}{\Gamma \hbar_{c} \text { return } V: F A} \quad \frac{\Gamma \hbar_{c} M: F A \quad \Gamma \vdash \underline{C}}{\Gamma \hbar_{c} M \text { to } x: A \text { in } N: \underline{C}} \quad \Gamma, \underline{C}
$$

$$
\frac{\Gamma \vdash \underline{C}}{\Gamma \mid z: \underline{C} \ln z: \underline{C}}
$$

$$
\frac{\Gamma \vdash_{v} V: A \quad \Gamma \mid z: \underline{C} \hbar_{n} K: \underline{D}[V / x]}{\Gamma \mid z: \underline{C} \hbar_{n}\langle V, K\rangle: \Sigma x: A \cdot \underline{D}}
$$

$$
\frac{\Gamma\left|z_{1}: \underline{C} \hbar_{\hbar} K: \Sigma x: A \cdot \underline{D}_{1} \quad \Gamma \vdash \underline{D}_{2} \quad \Gamma, x: A\right| z_{2}: \underline{D}_{1} \text { 有 } L: \underline{D}_{2}}{\Gamma \mid z_{1}: \underline{C} \hbar_{\hbar} K \text { to }\left\langle x: A, z_{2}: \underline{D}_{1}\right\rangle \text { in } L: \underline{D}_{2}}
$$

The title fibred comp. effects comes from $\Gamma \vdash \underline{C}$ and $\Gamma \vdash \underline{D}_{2}$

A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

$$
\frac{\Gamma \vdash_{c} M: F A}{\left.\Gamma \vdash_{c} M \text { to } x: A, x: A \ln _{c}\langle x, N\rangle: N\right\rangle: \Sigma y: A \cdot A \cdot \underline{C}(y)}
$$

The proposed rule for the monadic metalanguage is justified by

$$
\Sigma x: A \cdot F(B) \cong F(\Sigma x: A \cdot B)
$$

Categorical semantics

(fibrations and adjunctions)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models
given by:

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: i) a split closed comprehension category \mathcal{P}

- following Streicher and Hoffmann, we define a partial interpretation function $\llbracket-\rrbracket$ on raw syntax, that maps (if defined):
- a context Γ to and object $\llbracket \Gamma \rrbracket$ in \mathcal{B}
- a context Γ and a value type A to an object $\llbracket \Gamma ; A \rrbracket$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$
- a context Γ and a value term V to $\llbracket \Gamma ; V \rrbracket: 1_{\llbracket\ulcorner\rrbracket} \rightarrow X$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: i) a split closed comprehension category \mathcal{P}

- the display maps $\pi_{A}=\mathcal{P}(A):\{A\} \longrightarrow p(A)$ in \mathcal{B}
- induce the weakening functors $\pi_{A}^{*}: \mathcal{V}_{p(A)} \longrightarrow \mathcal{V}_{\{A\}}$
- and the value Σ - and Π-types are interpreted as adjoints

$$
\Sigma_{A} \dashv \pi_{A}^{*} \dashv \Pi_{A}
$$

(Σ_{A} is also required to be strong, i.e., support dep. elimination)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: ii) a split fibration q and a split fib. adj. $F \dashv U$

- we extend $\llbracket-\rrbracket$ so that it maps (if defined):
- a ctx. Г and a comp. type \underline{C} to an object $\llbracket \Gamma ; \underline{C} \rrbracket$ in $\mathcal{C}_{\llbracket \Gamma \rrbracket}$
- a ctx. Γ and a comp. term M to $\llbracket \Gamma ; M \rrbracket: 1_{\llbracket \Gamma \rrbracket} \rightarrow U(Z)$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$
- a ctx. Г, a comp. type \underline{C} and a hom. term K to

$$
\llbracket \Gamma ; \subset ; K \rrbracket: \llbracket \Gamma ; \subset \rrbracket \rightarrow Z \text { in } \mathcal{C}_{\llbracket \Gamma \rrbracket}
$$

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: ii) a split fibration q and a split fib. adj. $F \dashv U$

- the display maps $\pi_{A}=\mathcal{P}(A):\{A\} \longrightarrow p(A)$ in \mathcal{B}
- induce the weakening functors $\pi_{A}^{*}: \mathcal{C}_{p(A)} \longrightarrow \mathcal{C}_{\{A\}}$
- and the comp. Σ - and Π-types are interpreted as adjoints

$$
\Sigma_{A} \dashv \pi_{A}^{*} \dashv \Pi_{A}
$$

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

- for a split closed comprehension cat. $\mathcal{P}: \mathcal{V} \longrightarrow \mathcal{B}^{\rightarrow}$, we have

$$
\operatorname{Id}_{\mathcal{V}} \dashv \mathrm{Id}_{\mathcal{V}}: \mathcal{V} \longrightarrow \mathcal{V}
$$

- for a model of EEC (\mathcal{V} is CCC, \mathcal{C} is \mathcal{V}-enriched, \mathcal{V}-enr. adj., etc.)

$$
F_{\mathrm{EEC}} \dashv U_{\mathrm{EEC}}: s(\mathcal{V}, \mathcal{C}) \longrightarrow \mathrm{s}(\mathcal{V})
$$

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

- for a countable Lawvere theory \mathcal{L} and $\mathcal{P}_{\text {fam }}: \operatorname{Fam}($ Set $) \longrightarrow$ Set $^{\rightarrow}$

$$
\widehat{F_{\mathcal{L}}} \dashv \widehat{U_{\mathcal{L}}}: \operatorname{Fam}(\operatorname{Mod}(\mathcal{L}, \text { Set })) \longrightarrow \operatorname{Fam}(\text { Set })
$$

- for a monad $T:$ Set \longrightarrow Set and $\mathcal{P}_{\text {fam }}:$ Fam(Set) \longrightarrow Set $^{\rightarrow}$

$$
\widehat{F^{T}} \dashv \widehat{U^{T}}: \operatorname{Fam}\left(\mathrm{Set}^{T}\right) \longrightarrow \operatorname{Fam}(\text { Set })
$$

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

- for the continuations monad $R^{R^{(-)}}$: Set \longrightarrow Set, we have

$$
\widehat{R^{(-)}} \dashv \widehat{R^{(-)}}: \operatorname{Fam}\left(\operatorname{Set}^{\mathrm{op}}\right) \longrightarrow \operatorname{Fam}(\mathrm{Set})
$$

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

- these last three examples are instances of a more general result:
for $\mathcal{P}_{\text {fam }}: \operatorname{Fam}($ Set $) \longrightarrow$ Set $^{\rightarrow}$ and $F \dashv U: \mathcal{C} \longrightarrow$ Set, when \mathcal{C} has set-indexed products and set-indexed coproducts, we have

$$
\widehat{F} \dashv \widehat{U}: \operatorname{Fam}(\mathcal{C}) \longrightarrow \operatorname{Fam}(\text { Set })
$$

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

- for a $\mathcal{C P O}$-enriched monad $T: \mathcal{C P O} \longrightarrow \mathcal{C P O}$ with a least algebraic operation $\Omega: 0$ and reflexive coequalizers in $\mathcal{C P O}{ }^{T}$

$$
\widehat{F^{T}} \dashv \widehat{U^{T}}: \operatorname{CFam}\left(\mathcal{C P O} \mathcal{O}^{T}\right) \longrightarrow \operatorname{CFam}(\mathcal{C P O})
$$

allows us to treat general recursion as a computational effect

$$
\frac{\Gamma, x: U \underline{C} t_{c} M: \underline{C}}{\Gamma t_{c} \mu x: U \underline{C} \cdot M: \underline{C}}
$$

(we get such monads from $\mathcal{C P} \mathcal{O}$-enriched Law. theories with Ω)

Algebraic effects

(primitives for programming with side-effects)

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\frac{\cdot \vdash I \quad x_{i}: I \vdash O \quad I, O \text { are pure, i.e., they do not contain } U}{o \mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols simply a convenience (at least in Fam(Set)-based examples)

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\begin{array}{ll}
. \vdash I \quad x_{i}: I \vdash O & I, O \text { are pure, i.e., they do not contain } U \\
\hline \text { op }:\left(x_{i}: I\right) \longrightarrow O
\end{array}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols simply a convenience (at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

$$
\begin{gathered}
\text { lookup }:\left(x_{i}: \text { Bool }\right) \longrightarrow\left(\text { if } x_{i} \text { then String else Nat }\right) \\
\text { update } \left.:\left(x_{i}: \Sigma x: \text { Bool.(if } x \text { then String else Nat }\right)\right) \longrightarrow 1
\end{gathered}
$$

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\begin{array}{ll}
. \vdash I \quad x_{i}: I \vdash O \quad I, O \text { are pure, i.e., they do not contain } U \\
\text { op }:\left(x_{i}: I\right) \longrightarrow O
\end{array}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols simply a convenience (at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)

$$
\begin{gathered}
\text { lookup }:\left(x_{i}: \text { Sol }\right) \longrightarrow\left(\text { if } x_{i} \text { then String else Nat }\right) \\
\text { update }:\left(x_{i}: \Sigma x: \text { Sol. }(\text { if } x \text { then String else Nat })\right) \longrightarrow 1
\end{gathered}
$$

Algebraic operations:

$\Gamma \vdash_{v} V: I \quad \Gamma \vdash \underline{C} \quad \Gamma, x: O\left[V / x_{i}\right] \vdash_{c} M: \underline{C}$

$$
\Gamma \ell_{\bar{c}} \circ p \frac{C}{V}(x . M): \underline{C}
$$

Generic effects:

$$
\frac{\Gamma \vdash_{v} V: I}{\Gamma \hbar_{c} \operatorname{genop}_{V}: F\left(O\left[V / x_{i}\right]\right)}
$$

What about handlers?

What about handlers?

We ensure that K 's behave like homomorphisms via

$$
\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \Longrightarrow \Gamma t_{c} K\left[\operatorname{op}_{V} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op}_{V} \underline{D}(x \cdot K[M / z]): \underline{D}
$$

What about handlers?

We ensure that K's behave like homomorphisms via

$$
\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \vdash_{\bar{c}} K\left[\operatorname{op}_{\bar{V}}(x \cdot M) / z\right]=\operatorname{op} \underline{D}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \vdash_{c} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

What about handlers?

We ensure that K 's behave like homomorphisms via

$$
\Gamma \mid z: \underline{C} \vdash_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{\bar{c}} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op} \frac{D}{V}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \hbar_{c} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's

What about handlers?

We ensure that K 's behave like homomorphisms via

$$
\Gamma \mid z: \underline{C} \vdash_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{\bar{c}} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op}_{V}^{\underline{D}}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \vdash_{\bar{c}} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\text {op }}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's
Q: so can we accommodate?
$\Gamma \mid z: \underline{C} \hbar_{h} K$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\text {op }}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{D}$

What about handlers?

We ensure that K 's behave like homomorphisms via

$$
\Gamma \mid z: \underline{C} \vdash_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{\bar{c}} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op}_{V}^{\underline{D}}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \hbar_{c} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\text {op }}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's
Q: so can we accommodate?
$\Gamma \mid z: \underline{C} \hbar_{h} K$ handled with $\left\{\operatorname{op}_{x}(y) \mapsto M_{\text {op }}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{D}$
A: Unfortunately not - the algebra structure only at term level

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash_{\mathrm{v}} V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{(x, y) \cdot V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0\right\rangle}\right.}
$$

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash_{\mathrm{v}} V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{(x, y) \cdot V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O\right\rangle}\right.}
$$

Introduction: force $\left\langle A,\left\{(x, y) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle$, where $V: A$

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{(x, y) . V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0\right\rangle}\right.}
$$

Introduction: force $\left\langle A,\left\{(x, y) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle$, where $V: A$
Elimination: (comp. term version)
(equational proof obligations about N omitted)

$$
\frac{\Gamma \vdash_{c} M:\left\langle A,\left\{(x, y) \cdot V_{\mathrm{op}}\right\}_{\mathrm{op}}\right\rangle \quad \Gamma, x: A t_{\mathrm{c}} N: \underline{C}}{\Gamma \vdash_{\mathrm{c}} \operatorname{run} M \operatorname{as} x \operatorname{in} N: \underline{C}}
$$

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{(x, y) . V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0\right\rangle}\right.}
$$

Introduction: force $\left\langle A,\left\{(x, y) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle$, where $V: A$
Elimination: (comp. term version) (equational proof obligations about N omitted)

$$
\frac{\Gamma t_{c} M:\left\langle A,\left\{(x, y) \cdot V_{\mathrm{op}}\right\}_{\mathrm{op}}\right\rangle \quad \Gamma, x: A t_{c} N: \underline{C}}{\Gamma t_{\mathrm{c}} \operatorname{run} M \text { as } x \text { in } N: \underline{C}}
$$

Equations:

- $U\left\langle A,\left\{(x, y) . V_{\text {op }}\right\}_{\text {op }}\right\rangle=A$
- $\operatorname{op}_{V}^{\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle}(x \cdot M)=$ force $\left(V_{\text {op }}\left[V / x_{1}, \lambda x\right.\right.$.thunk $\left.\left.M / x_{2}\right]\right)$
- $(\eta$ - and β-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:

(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0}}{\Gamma \vdash\left\langle A,\left\{(x, y) . V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0\right\rangle}\right.}
$$

Encoding Plotkin-Pretnar handlers:

$$
M \text { handled with }\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}} \text { to } x: A \text { in } M_{\text {ret }}
$$

$$
\stackrel{\text { def }}{=}
$$

$\operatorname{force}_{\underline{C}}\left(\operatorname{thunk}\left(M\right.\right.$ to $x: A$ in force $\left.\left.\left._{\langle U \underline{C}, \ldots \operatorname{thunk}}\left(M_{\text {op }}\right) \ldots\right\rangle\left(\operatorname{thunk} M_{\text {ret }}\right)\right)\right)$

$$
: \underline{C}
$$

Conclusions

A dependently-typed computational language with

- clear distinction between values and computations
- new and useful structure on comp. types (Σ-types)
- universes of value and comp. types (omitted)
- dep.-typed algebraic effects and handlers
- general recursion as comp. effect
- natural categorical semantics, using standard tools
- parametrised fibred computational effects and a principled account of Brady's resource-dependent effects in Idris (omitted)

Conclusions

A dependently-typed computational language with

- clear distinction between values and computations
- new and useful structure on comp. types (Σ-types)
- universes of value and comp. types (omitted)
- dep.-typed algebraic effects and handlers
- general recursion as comp. effect
- natural categorical semantics, using standard tools
- parametrised fibred computational effects and a principled account of Brady's resource-dependent effects in Idris (omitted)

Thank you for listening!

Combining effect- and dependent-typing
(adding parameters/worlds/permissions/etc.)

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

- we extend our language with an effect-and-type system
- we build on [Atkey'09]'s parametrised notions of computation
- we take par. adjunctions as a primitive construction
- we make the effect annotations internal to our language
- we want a semantics for [Brady'13,'14]'s Effects DSL for Idris

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

- we extend our language with an effect-and-type system
- we build on [Atkey'09]'s parametrised notions of computation
- we take par. adjunctions as a primitive construction
- we make the effect annotations internal to our language
- we want a semantics for [Brady'13,'14]'s Effects DSL for Idris

We omit: Details of the accompanying denotational semantics

- based on fibred analogues of parametrised adjunctions, e.g.,

- in particular, we take $\mathcal{W} \stackrel{\text { def }}{=} \int\left(\lambda X \cdot \mathcal{V}_{X}\left(1_{X},!_{X}^{*}(\llbracket S \rrbracket)\right)\right)$

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system
Our solution: Use fibred version of S-parametrised adjunctions

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash_{v} W: S}{\Gamma \vdash F_{W} A} \quad \frac{\Gamma \vdash \underline{C} \Gamma \vdash_{v} W: S}{\Gamma \vdash U_{W} \underline{C}}
$$

with the resulting S-parametrised monad (EffM in Idris) given by

$$
\Gamma \vdash T_{W_{1}, W_{2}} A \stackrel{\text { def }}{=} U_{W_{1}}\left(F_{W_{2}} A\right)
$$

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system
Our solution: Use fibred version of S-parametrised adjunctions

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash_{v} W: S}{\Gamma \vdash F_{W} A} \quad \frac{\Gamma \vdash \underline{C} \Gamma \vdash_{v} W: S}{\Gamma \vdash U_{W} \underline{C}}
$$

with the resulting S-parametrised monad (EffM in Idris) given by

$$
\Gamma \vdash T_{W_{1}, W_{2}} A \stackrel{\text { def }}{=} U_{W_{1}}\left(F_{W_{2}} A\right)
$$

The main changes we make to our language:

- typing judgment for comp. terms: $\Gamma \mid W t_{\bar{c}} M$: \underline{C}
- returning values:
$\Gamma \mid W t_{\bar{c}} \operatorname{return}_{W} V: F_{W} A$
- thunking computations:
- forcing of thunks: $\Gamma \vdash_{v} \operatorname{thunk} \frac{C}{W} M: U_{W} \underline{C}$
$\Gamma \mid W t_{\bar{c}}$ force $\frac{C}{W} V: \underline{C}$

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects
Example: We will look at the prototypical example of:

- locking-unlocking / opening-closing / authenticating / etc.

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects
Example: We will look at the prototypical example of:

- locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

$$
\begin{gathered}
\Gamma \mid \text { acquired } \hbar_{\iota} \text { lookup : } F_{\text {acquired }} \text { String } \\
\Gamma \mid \text { acquired } \iota_{\iota} \text { update }{ }_{V}: F_{\text {acquired }} 1 \\
\Gamma \mid \text { acquired } \hbar_{c} \text { releaseLock : } F_{\text {released }} \text { Bool }
\end{gathered}
$$

(in terms of generic effects, omitting the corresponding signature)

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects
Example: We will look at the prototypical example of:

- locking-unlocking / opening-closing / authenticating / etc.

As usual, the non-failing operations are easy to specify, e.g.,

$$
\begin{gathered}
\Gamma \mid \text { acquired } \hbar_{\iota} \text { lookup : } F_{\text {acquired }} \text { String } \\
\Gamma \mid \text { acquired } \hbar_{\iota} \text { update }{ }_{V}: F_{\text {acquired }} 1 \\
\Gamma \mid \text { acquired } \hbar_{c} \text { releaseLock : } F_{\text {released }} \text { Bool }
\end{gathered}
$$

(in terms of generic effects, omitting the corresponding signature)
Q: However, what to do with possibly failing operations?

$$
\Gamma \mid \text { released } \iota_{c} \text { acquireLock : } F_{? ? ?} \text { Bool }
$$

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?
A1: If going with the monadic view, then we can try to define another (more dep.-parametrised) monad-like functor

$$
\frac{\Gamma \vdash_{v} W_{1}: S \quad \Gamma \vdash A \quad \Gamma, x: A \vdash_{v} W_{2}: S}{\Gamma \vdash T_{W_{1}}\left((x: A) \cdot W_{2}\right)}
$$

and specify the lock acquiring generic effect as
$\Gamma \vdash$ acquireLock : $T_{\text {released }}((x$:Bool $)$.if x then acquired else released $)$

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?
A1: If going with the monadic view, then we can try to define another (more dep.-parametrised) monad-like functor

$$
\frac{\Gamma \vdash_{\mathrm{v}} W_{1}: S \quad \Gamma \vdash A \quad \Gamma, x: A \vdash_{\mathrm{v}} W_{2}: S}{\Gamma \vdash T_{W_{1}}\left((x: A) \cdot W_{2}\right)}
$$

and specify the lock acquiring generic effect as
$\Gamma \vdash$ acquireLock : $T_{\text {released }}((x$:Bool $)$.if x then acquired else released $)$

- a natural generalisation of the functor part of fib. par. monads
- this is the approach that [Brady'14] took for Idris
- but no clear way of equipping it with par. adjunction structure

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?
A1: If going with the monadic view, then we can try to define another (more dep.-parametrised) monad-like functor

$$
\frac{\Gamma \vdash_{\mathrm{v}} W_{1}: S \quad \Gamma \vdash A \quad \Gamma, x: A \vdash_{\mathrm{v}} W_{2}: S}{\Gamma \vdash T_{W_{1}}\left((x: A) \cdot W_{2}\right)}
$$

and specify the lock acquiring generic effect as
$\Gamma \vdash$ acquireLock: $T_{\text {released }}((x$: Bool $)$.if x then acquired else released $)$

- a natural generalisation of the functor part of fib. par. monads
- this is the approach that [Brady'14] took for Idris
- but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U !

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define the more dependently-parametrised monad-like functor as

$$
\frac{\Gamma \vdash W_{1}: S \quad \Gamma \vdash A}{\Gamma \vdash T_{W_{1}}\left((x: A) \cdot W_{2}\right) \quad \stackrel{\text { def }}{=} \quad U_{W_{1}}\left(\Sigma x: A \cdot\left(F_{W_{2}} 1\right)\right)}
$$

using the comp. \sum-types to quantify over the possible outcomes

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?
A2a: If we keep with the (par.) adjunctions view, we can define the more dependently-parametrised monad-like functor as

$$
\frac{\Gamma \downarrow W_{1}: S}{\Gamma \vdash A} \quad \Gamma, x: A \downarrow W_{2}: S
$$

using the comp. Σ-types to quantify over the possible outcomes

A2b: We can then specify the lock acquiring generic effect as
$\Gamma \mid$ released ${ }^{c}$ acquireLock: Σx : Bool. $\left(F_{(\text {if } x \text { then acquired else released) }} 1\right)$

Parametrised fibred algebraic effects

Parametrised effect theories:

- we consider signatures of typed operation symbols

$$
\frac{x_{\mathrm{w}}: S \vdash I \quad x_{\mathrm{w}}: S, x_{\text {in }}: I \vdash O \quad x_{\mathrm{w}}: S, x_{\text {in }}: I, x_{\text {in }}: O \vdash_{\mathrm{v}} W_{\text {out }}: S}{\mathrm{op}_{x_{\mathrm{w}}, x_{\text {in }}, x_{\text {out }}}: I \longrightarrow O, W_{\text {out }}}
$$

- equipped with equations on derivable effect terms

Parametrised fibred algebraic effects

Parametrised effect theories:

- we consider signatures of typed operation symbols

$$
\frac{x_{w}: S \vdash I \quad x_{w}: S, x_{\text {in }}: I \vdash O \quad x_{w}: S, x_{\text {in }}: I, x_{\text {in }}: O \vdash \vdash_{\text {out }}: S}{\text { op }_{x_{w}, x_{\text {in }}, x_{\text {out }}}: I \longrightarrow O, W_{\text {out }}}
$$

- equipped with equations on derivable effect terms

Algebraic operations:

$$
\frac{\Gamma \vdash_{v} V: I\left[W / x_{w}\right] \Gamma \vdash \underline{C} \Gamma, x: O\left[W / x_{w}, V / x_{\text {in }}\right] \mid W_{\text {out }}\left[W / x_{w}, \ldots\right] \vdash_{c} M: \underline{C}}{\Gamma \mid W \vdash_{c} \operatorname{op} \bar{C}(x . M): \underline{C}}
$$

Parametrised fibred algebraic effects

Parametrised effect theories:

- we consider signatures of typed operation symbols

$$
\frac{x_{\mathrm{w}}: S \vdash I \quad x_{\mathrm{w}}: S, x_{\text {in }}: I \vdash O \quad x_{\mathrm{w}}: S, x_{\text {in }}: I, x_{\text {in }}: O \vdash_{\mathrm{v}} W_{\text {out }}: S}{\mathrm{op}_{x_{\mathrm{w}}, x_{\mathrm{in}}, x_{\mathrm{out}}}: I \longrightarrow O, W_{\text {out }}}
$$

- equipped with equations on derivable effect terms

Algebraic operations:

$$
\frac{\Gamma \vdash_{\mathrm{v}} V: I\left[W / x_{\mathrm{w}}\right] \Gamma \vdash \underline{C} \Gamma, x: O\left[W / x_{\mathrm{w}}, V / x_{\text {in }}\right]\left|W_{\text {out }}\left[W / x_{\mathrm{w}}, \ldots\right]\right|_{\mathrm{c}} M: \underline{C}}{\Gamma \mid W \vdash_{c} \operatorname{op} \bar{C}(x . M): \underline{C}}
$$

Generic effects:

$$
\frac{\Gamma \vdash_{v} V: I\left[W / x_{w}\right]}{\Gamma \mid W t_{c} \text { genop }_{V}: \Sigma x: O\left[W / x_{w}, V / x_{\text {in }}\right] . F_{W_{\text {out }}\left[W / x_{w}, V / x_{\text {in }}, x / x_{\text {out }}\right]} 1}
$$

Result: Such alg. ops. and gen. effs. are in 1-1 relationship
Note: Currently working on equipping W's with order/morphisms

