Dependent Types and
Fibred Computational Effects

Danel Ahman!

(joint work with Gordon Plotkin® and Neil Ghani?)

LLFCS, University of Edinburgh
2MSP Group, University of Strathclyde

January 22, 2016

Outline

Language design principles for combining

e dependent types (M da(V, W), ...

e computational effects (state, 1/O, probability, recursion, ...

Our work was guided by two problems
e effectful programs in types

e assigning types to effectful programs

In the end we want to
e have a mathematically natural story
e use established tools and methods

e cover a wide range of computational effects

If time permits

e integrating dependent- and effect-typing (ldris)

Effectful programs in types

(type-dependency in the presence of effects)

Effectful programs in types

Let's assume that we have a dependent type A(x), e.g.:

def

x:NatF A(x) = if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

Effectful programs in types

Let's assume that we have a dependent type A(x), e.g.:

def

x:NatF A(x) = if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

A1l: In this work we say no
e type-checking should only depend on static information
e e.g., how would one compute Alreceive(y.M)/x] ?

e we recover dependency on effectful computations via thunks

Effectful programs in types

Let's assume that we have a dependent type A(x), e.g.:

def

x:NatF A(x) = if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

A1l: In this work we say no
e type-checking should only depend on static information
e e.g., how would one compute Alreceive(y.M)/x] ?

e we recover dependency on effectful computations via thunks

A2: In future work, we plan to also look at yes
e lifting effect operations from terms to types, e.g., receive(y. A)
e similarities with ref. types and op. modalities [A.,Plotkin’15]
e type-dependency (z:C F A(z)) needs to be “homomorphic”

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.
e value typesTH A (MLTT + thunks + ...)
e computation types [- C (dep. version of CBPV/EEC)

e where [contains only value variables x1: A1, ..., x,:Ap

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

e value typesTH A (MLTT + thunks + ...)
e computation types [- C (dep. version of CBPV/EEC)
e where [contains only value variables x1: A1, ..., x,:Ap

Note: Other options are the monadic metalanguage and FGCBV
e but basing the work on CBPV/EEC gives a more general story
e especially for the treatment of sequential composition

e and also for integrating dependent- and effect-typing

Assigning types to effectful programs

(i.e., typing sequential composition)

Assigning types to effectful programs

Our problem: The standard typing rule for seq. composition

FNeM:FA M x:Atk N(x): C(x)
Ne M to x:Ain N(x): C(x)

is not correct any more because x can appear free in
C(x)

in the conclusion

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C, i.e.:

FrNeM:FA r=cC Nx:AeN:C
e Mtox:Ain N: C

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C, i.e.:

FrNeM:FA r=cC Nx:AeN:C
e Mtox:Ain N: C

But sometimes it is necessary for C to depend on x!

e e.g., in monadic parsing of well-typed syntax (case of functions)
- fe parseFun : F (Xy1.Xys.LangSyntax(fun y; y»))
x:Xy1.Xy».LangSyntax(fun y; y») fc parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C, i.e.:

FrNeM:FA r=cC Nx:AeN:C
e Mtox:Ain N: C

But sometimes it is necessary for C to depend on x!

e e.g., in monadic parsing of well-typed syntax (case of functions)
- fe parseFun : F (Xy1.Xys.LangSyntax(fun y; y»))
x:Xy1.Xy».LangSyntax(fun y; y») fc parseFunArg : F (LangSyntax(fst x))

Option 2: We could lift seq. composition to type level:
e Mtox:Ain N: M to x:Ain C

But then comp. types contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Option 1: We could restrict the free variables in C, i.e.:

FrNeM:FA r=c¢ MNx:AkN:C
leMtox:Ain N: C

But sometimes it is necessary for C to depend on x!

e e.g., in monadic parsing of well-typed syntax (case of functions)
- fc parseFun : F (Xy1.Xy».LangSyntax(fun y; y2))
x:Xy1.Xys.LangSyntax(fun y; y») tc parseFunArg : F (LangSyntax(fst x))

Option 3: In the monadic metalanguage one could also try:

r-M:TA MNx:AEN:TB(x)
N=Mtox:Ain N: T (Xx: A.B(x))

But what makes this a principled solution?

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

e and combine it with Option 1, i.e., restricting C in seq. comp.

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

e and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x:Natk N : C)

M % lookup(return2,return3) to x:Nat in N

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

e and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x:Natk N : C)

M % lookup(return2,return3) to x:Nat in N

After looking up the bit, this program evaluates as either

N[2/x] attype C[2/x] or N[3/x] attype C[3/x]

Assigning types to effectful programs ctd.

Aim: Assigning a sensible type to sequential composition
Option 3: We draw inspiration from algebraic effects

e and combine it with Option 1, i.e., restricting C in seq. comp.

For example, consider the stateful program (for x:Natk N : C)

M % lookup(return2,return3) to x:Nat in N

After looking up the bit, this program evaluates as either

N[2/x] attype C[2/x] or N[3/x] attype C[3/x]

Idea: M denotes an element of the coproduct of algebras

Clox+ s = F(U(CR/A) - UCB/A)),

Sidenote about coproducts of algebras

Note: Elements of C[2/x] + C[3/x] are not only inlc or inr c!
e e.g., consider another computation tree in C[2/x] + C[3/x]

lookup
lookup lookup
— N . o

lookup inl inr inr
I | \ \
inr (o) c3 C:/))
|

lookup (3]
/ \ /

o where C[2/x]+ C[3/x] & F(U(g[z/x]) + U(£[3/x])) -

e where ¢; € C[2/x] and ¢3, ¢ € C[3/x], and

e where the red subtrees are made equal by =

Putting these ideas together

(a core dependently-typed calculus with comp. effects)

A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

e general computational effects

a clear distinction between values and computations

restricting free variables in seq. composition

e using a coproducts of algebras

a mathematically natural model theory, using standard tools

A computational dep.-typed language

Value types: MLTT's types + thunks + ...
AB = Nat | 1 | Nx:AB | Zx:AB | lda(V,W) | UC | ...

e U C is the type of thunked (i.e., suspended) computations

A computational dep.-typed language

Value types: MLTT's types + thunks + ...
AB = Nat | 1| Nx:AB | x:AB | lda(V,W) | UC | ...

e U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types
C,D:=FA | Nx:AC | £x:AC

e F Ais the type of computations returning values of type A

e [x:A.C is the type of dependent effectful functions
e it generalises CBPV's and EEC's
computational function type A — C and product type C x D
e Y x:A.C is the generalisation of coproducts of algebras

e it generalises EEC's
computational tensor type A® C and sum type C + D

A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using judgment 'k V : A

A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using judgment 'k V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms
M,N ::= force V

| returnV

| Mtox:Ain N

| Ax:AM

| MV

| (V,M) (comp. X intro.)
| Mto (x:Az:C) in K (comp. X elim.)

A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using judgment 'k V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms
M,N ::= force V

| returnV

| Mtox:Ain N

| Ax:AM

| MV

| (V,M) (comp. X intro.)
| Mto (x:Az:C) in K (comp. X elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

[k (V,M) to (x:A,z:C) in K = K[V/x,M/z] : D

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

[k (V,M) to (x:A,z:C) in K = K[V/x,M/z] : D

Homomorphism terms: dep.-typed version of EEC's linear terms

K,L = =z (linear comp. vars.)
| Ktox:Ain M
| Ax:AK
| KV
| (V,K) (comp-X intro.)
| Kto (x:Az:C)in L (comp-X elim.)

Computation and homomorphism terms are typed using judgments
e [EM:C

e [|z:CKRK:D (linear in z; comp. bound to z happens first)

A computational dep.-typed language

Note: We need to define K in such a way that we preserve the
intended evaluation order, e.g., as in

[k (V,M) to (x:A,z:C) in K = K[V/x,M/z] : D

Homomorphism terms: dep.-typed version of EEC's linear terms

K,L = =z (linear comp. vars.)
| Ktox:Ain M
| Ax:AK
| KV
| (V,K) (comp-X intro.)
| Kto (x:Az:C)in L (comp-X elim.)

Computation and homomorphism terms are typed using judgments
e [EM:C
e [|z:CKRK:D (linear in z; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Nl V:A FlrNeM:FA Nr=c¢ MNx:AN:C
[returnV : FA Fl'eMtox:Ain N: C
I L
MNz:Ckz:C

rkV:A Nz:Ck K:D[V/x]
MNz:Ck(V,K): x:AD

MNz:Ch K:Ex:A.Dq =D, M x:A|lz:Dyk L:Dy
MNz:Clk Kto (x:A z:D;) in L: D,

The title fibred comp. effects comes from '+ C and '+ D,

A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Mx:Ak N: C(x)
reEM:FA x:Ak (x,N):Xy:A.C(y)
e Mtox:Ain (x,N):Xy:A.C(y)

The proposed rule for the monadic metalanguage is justified by

Yx:A.F(B) = F(Xx:A.B)

Categorical semantics
(fibrations and adjunctions)

Categorical semantics
Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models

given by:

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

e a sound and complete class of models

given by: i) a split closed comprehension category P

P

B =——V
p<4 ’1){}
cod
B

following Streicher and Hoffmann, we define a partial
interpretation function [—] on raw syntax, that maps (if defined):

a context I' to and object [I] in B

a context I and a value type A to an object [I'; A] in Vi

a context I and a value term V to [I'; V] : 1jrp — X in Vipj

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models

given by: i) a split closed comprehension category P

B —"

p< ’1> {-}
cod
B

e the display maps m4 = P(A) : {A} — p(A) in B

e induce the weakening functors 7 : Vy4) — Via}

e and the value ¥- and [-types are interpreted as adjoints
Yadmn M4

(X4 is also required to be strong, i.e., support dep. elimination)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models

given by: ii) a split fibration g and a split fib. adj. F 4 U

/\
B> ~—" y 1 c
\—/
p<4 ’1){} v
cod

q

we extend [—] so that it maps (if defined):

a ctx. [and a comp. type C to an object [I; C] in Cyry
e actx. I'and a comp. term M to [[; M] : 1jrp — U(Z) in Vi

actx. I, a comp. type C and a hom. term K to
[[r;g; K]] : [[I—,Q]] — Zin C[[r}]

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models
given by: ii) a split fibration g and a split fib. adj. F 4 U
F

P /J_\

B ~———V ¢
_/
P C ’1> {-} v
cod
B q
e the display maps m4 = P(A) : {A} — p(A) in B
e induce the weakening functors 7 : Cpa) — Cay

e and the comp. X- and [l-types are interpreted as adjoints

Yadmn M4

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):
e for a split closed comprehension cat. P :V — B, we have
ldy 41dy : YV — V
e for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)
Feec 4 Ugec : s(V,C) — s(V)

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

e for a countable Lawvere theory £ and Py, : Fam(Set) — Set™

Fz - Uz : Fam(Mod(L, Set)) —+ Fam(Set)

e for a monad T : Set — Set and Pf,p, : Fam(Set) — Set™

FT 4 UT : Fam(Set”) —> Fam(Set)

Examples of fibred adjunction models

Some sources of examples (writing fib. adj. with total cats. only):

e for the continuations monad RR™ : Set — Set, we have

RO 4 RO . Fam(Set°?) — Fam(Set)

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

e these last three examples are instances of a more general result:

for Pram : Fam(Set) — Set™ and F 4 U : C — Set, when C has
set-indexed products and set-indexed coproducts, we have

F 4 U : Fam(C) —s Fam(Set)

Examples of fibred adjunction models

More sources of examples (writing fib. adj. with total cats. only):

e for a CPO-enriched monad T : CPO — CPO with a least
algebraic operation € : 0 and reflexive coequalizers in CPOT

FT 4 UT : CFam(CPOT) —s CFam(CPO)
allows us to treat general recursion as a computational effect

MNx:UCEM:C
Ne px:UC.M: C

(we get such monads from CPO-enriched Law. theories with)

Algebraic effects

(primitives for programming with side-effects)

Algebraic operations and equations

Effect theories:
e we consider signatures of typed operation symbols

el xi: I+ O I, O are pure, i.e., they do not contain U
op:(xi:l)— O

e equipped with equations on derivable effect terms

e type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Algebraic operations and equations

Effect theories:
e we consider signatures of typed operation symbols

el xi: I+ O I, O are pure, i.e., they do not contain U
op:(xi:l)— O

e equipped with equations on derivable effect terms

e type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)
lookup : (xj:Bool) — (if x; then String else Nat)
update : (x;: Xx:Bool.(if x then String else Nat)) — 1

Algebraic operations and equations

Effect theories:
e we consider signatures of typed operation symbols

el xi: I+ O I, O are pure, i.e., they do not contain U
op:(xi:l)— O

e equipped with equations on derivable effect terms

e type-dependency in operation symbols simply a convenience
(at least in Fam(Set)-based examples)

Example: Global store with two locations (modeled as booleans)
lookup : (xj:Bool) — (if x; then String else Nat)
update : (x;: Xx:Bool.(if x then String else Nat)) — 1

Algebraic operations: Generic effects:
lrNwV:l THEC [x:0OV/x]kM:C FoV:J

(S op%(x.l\/l) : C I ke genop,, : F(O[V/xi])

What about handlers?

What about handlers?

We ensure that K's behave like homomorphisms via

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

What about handlers?

We ensure that K's behave like homomorphisms via

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

Recall: Plotkin-Pretnar presentation of handlers is given by:
[t M handled with {op,(y) — Mop}op to x:A in M : C

e semantically, {op,(y) = Mop}op defines an algebra on U[C]
e and M handled ... is the unique homomorphism out of F[A]

What about handlers?

We ensure that K's behave like homomorphisms via

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

Recall: Plotkin-Pretnar presentation of handlers is given by:
[t M handled with {op,(y) — Mop}op to x:A in M : C

e semantically, {op,(y) = Mop}op defines an algebra on U[C]
e and M handled ... is the unique homomorphism out of F[A]

Note: We have homomorphisms in the language, namely, the K's

What about handlers?

We ensure that K's behave like homomorphisms via

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

Recall: Plotkin-Pretnar presentation of handlers is given by:
[t M handled with {op,(y) — Mop}op to x:A in M : C

e semantically, {op,(y) = Mop}op defines an algebra on U[C]
e and M handled ... is the unique homomorphism out of F[A]

Note: We have homomorphisms in the language, namely, the K's

Q: so can we accommodate?

[|z:Ck K handled with {op,(y) — Mop}op to x: A in M,y : D

What about handlers?

We ensure that K's behave like homomorphisms via

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

Recall: Plotkin-Pretnar presentation of handlers is given by:
[t M handled with {op,(y) — Mop}op to x:A in M : C

e semantically, {op,(y) = Mop}op defines an algebra on U[C]
e and M handled ... is the unique homomorphism out of F[A]

Note: We have homomorphisms in the language, namely, the K's

Q: so can we accommodate?

[|z:Ck K handled with {op,(y) — Mop}op to x: A in M,y : D

A: Unfortunately not — the algebra structure only at term level

One (possible) way forward with handlers
User-defined algebra type:
(equational proof obligations about V,p's omitted)
r-A {Fx 1y Olx/xi] = Ak Vop : Abop:(x:1)—0
M (A (%, ¥)-Vop top:(x:1)—0)

One (possible) way forward with handlers
User-defined algebra type:
(equational proof obligations about V,p's omitted)
r-A {Fx 1y Olx/xi] = Ak Vop : Abop:(x:1)—0
M (A (%, ¥)-Vop top:(x:1)—0)

Introduction: force (4 ((xy).Voplop) V', Where V : A

One (possible) way forward with handlers
User-defined algebra type:
(equational proof obligations about V,p's omitted)
r-A {Fx 1y Olx/xi] = Ak Vop : Abop:(x:1)—0
M (A (%, ¥)-Vop top:(x:1)—0)

Introduction: force (4 ((xy).Voplop) V', Where V : A

Elimination: (comp. term version)
(equational proof obligations about N omitted)
Me M: (A {(x,y) Vop}op) Mx:Ak N:C
[frun Mas xin N: C

One (possible) way forward with handlers
User-defined algebra type:
(equational proof obligations about V,p's omitted)
r-A {Fx 1y Olx/xi] = Ak Vop : Abop:(x:1)—0
M (A (%, ¥)-Vop top:(x:1)—0)

Introduction: force (4 ((xy).Voplop) V', Where V : A

Elimination: (comp. term version)
(equational proof obligations about N omitted)
Me M: (A {(x,y) Vop}op) Mx:Ak N:C
[frun Mas xin N: C

Equations:
° U<Aa {(Xa)/)-vop}op> =A
o op{ it Verdool (o 11y = force (Vop[V/x1, Ax.thunk M/x;])

e (7- and f3-equations for intro.-elim. interaction)

One (possible) way forward with handlers

User-defined algebra type:
(equational proof obligations about V;,'s omitted)
r-A {Fx 1y Olx/xi] = Al Vop : Alop:(x:1)—s0
M (A, {(X7y)'V0P}Op:(X,-:I)*>O>

Encoding Plotkin-Pretnar handlers:
M handled with {op,(y) — Mop}op to X: A in Miet

def

forcec <thunk (I\/I to x:A in forceyc, .. thunk (Myp)...) (thunk Mret))>

- C

Conclusions

A dependently-typed computational language with

clear distinction between values and computations
new and useful structure on comp. types (X-types)
universes of value and comp. types (omitted)
dep.-typed algebraic effects and handlers

general recursion as comp. effect

natural categorical semantics, using standard tools

parametrised fibred computational effects and a principled
account of Brady's resource-dependent effects in Idris (omitted)

Conclusions

A dependently-typed computational language with

clear distinction between values and computations
new and useful structure on comp. types (X-types)
universes of value and comp. types (omitted)
dep.-typed algebraic effects and handlers

general recursion as comp. effect

natural categorical semantics, using standard tools

parametrised fibred computational effects and a principled
account of Brady's resource-dependent effects in Idris (omitted)

Thank you for listening!

Combining effect- and dependent-typing

(adding parameters/worlds/permissions/etc.)

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

we extend our language with an effect-and-type system

we build on [Atkey'09]'s parametrised notions of computation
we take par. adjunctions as a primitive construction

we make the effect annotations internal to our language

we want a semantics for [Brady'13,'14]'s Effects DSL for Idris

Fibred parametrised comp. effects

Aim: To make our comp. types more expressive

we extend our language with an effect-and-type system

we build on [Atkey'09]'s parametrised notions of computation
we take par. adjunctions as a primitive construction

we make the effect annotations internal to our language

we want a semantics for [Brady'13,'14]'s Effects DSL for Idris

omit: Details of the accompanying denotational semantics

based on fibred analogues of parametrised adjunctions, e.g.,

W 1% fo.wavX £ C
A

in particular, we take W & ()\X.Vx(lx, '3}([[5]])))

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

[FA TwkW:s THEC TEW:S
M- Fu A M Uw C

with the resulting S-parametrised monad (Ef£M in Idris) given by

def

M= Tw,w, A = Uny, (Fuy, A)

Fibred parametrised comp. effects

Aim: To extend our language with an effect-and-type system

Our solution: Use fibred version of S-parametrised adjunctions

[FA TwkW:s THEC TEW:S
M- Fu A M Uw C

with the resulting S-parametrised monad (Ef£M in Idris) given by

def

M= Tw,w, A = Uny, (Fuy, A)

The main changes we make to our language:

typing judgment for comp. terms: [|Wt M: C

e returning values: I Wt returny V : Fyy A

thunking computations: N thunk%v M: Uy C

. c
forcing of thunks: M| Wk forcey, V: C

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects

Example: We will look at the prototypical example of:

e locking-unlocking / opening-closing / authenticating / etc.

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects
Example: We will look at the prototypical example of:
e locking-unlocking / opening-closing / authenticating / etc.
As usual, the non-failing operations are easy to specify, e.g.,
I | acquired fe Lookup : Facquired String
[| acquired ke update, : Faicquired 1
I | acquired ke releaseLock : Frejeased BoOI

(in terms of generic effects, omitting the corresponding signature)

Fibred parametrised comp. effects

Aim: We can explain [Brady'14]'s resource-dependent effects
Example: We will look at the prototypical example of:
e locking-unlocking / opening-closing / authenticating / etc.
As usual, the non-failing operations are easy to specify, e.g.,
I | acquired fe Lookup : Facquired String
[| acquired ke update, : Faicquired 1
I | acquired ke releaseLock : Frejeased BoOI

(in terms of generic effects, omitting the corresponding signature)

Q: However, what to do with possibly failing operations?

I | released c acquireLock : f777 Bool

Fibred parametrised comp. effects
Q: What to do with possibly failing operations?

Al: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Ns wp:S Mr=A Mx:AF W5 : S
F - TWI((X:A).WQ)

and specify the lock acquiring generic effect as

[acquireLock : Tyeleased ((X:Bool).if x then acquired else released)

Fibred parametrised comp. effects
Q: What to do with possibly failing operations?

Al: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Ns wp:S Mr=A Mx:AF W5 : S
F - TWI((X:A).WQ)

and specify the lock acquiring generic effect as
[acquireLock : Tyeleased ((X:Bool).if x then acquired else released)
e a natural generalisation of the functor part of fib. par. monads

e this is the approach that [Brady'14] took for Idris

e but no clear way of equipping it with par. adjunction structure

Fibred parametrised comp. effects
Q: What to do with possibly failing operations?

Al: If going with the monadic view, then we can try to define
another (more dep.-parametrised) monad-like functor

Ns wp:S Mr=A Mx:AF W5 : S
F - TWI((X:A).WQ)

and specify the lock acquiring generic effect as

[acquireLock : Tyeleased ((X:Bool).if x then acquired else released)

e a natural generalisation of the functor part of fib. par. monads
e this is the approach that [Brady'14] took for Idris

e but no clear way of equipping it with par. adjunction structure

But: We can achieve the same with our less dep.-typed F and U!

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define
the more dependently-parametrised monad-like functor as

Ns Wi: S MN=A Nx:AkF W5 : S

def

FE T ((cA) W) = U (Bx:A(Fu, 1))

using the comp. 2-types to quantify over the possible outcomes

Fibred parametrised comp. effects

Q: What to do with possibly failing operations?

A2a: If we keep with the (par.) adjunctions view, we can define
the more dependently-parametrised monad-like functor as

Ns Wi: S MN=A Nx:AkF W5 : S

def

FE T ((cA) W) = U (Bx:A(Fu, 1))

using the comp. 2-types to quantify over the possible outcomes

A2b: We can then specify the lock acquiring generic effect as

I released I acquireLock : 2x:Bool.(F(is x then acquired else released) 1)

Parametrised fibred algebraic effects

Parametrised effect theories:
e we consider signatures of typed operation symbols

Xw:SFEI xu:S,xn:lFO xu:S, Xn:l,xn:0F Woue : S
:/—> O, WOLIt

o
vavyxin »Xout

e equipped with equations on derivable effect terms

Parametrised fibred algebraic effects

Parametrised effect theories:
e we consider signatures of typed operation symbols

Xw:SFEI xu:S,xn:lFO xu:S, Xn:l,xn:0F Woue : S
o — O, WOLIt

OP iy, Xin ,Xout
e equipped with equations on derivable effect terms
Algebraic operations:
Tk ViI[W/xy] THC T,x:0[W /%y, V/Xin] | Wout[W /X, ..] e M : C
[Wk opS(x.M) : C

Parametrised fibred algebraic effects

Parametrised effect theories:
e we consider signatures of typed operation symbols

Xw:SFEI xu:S,xn:lFO xu:S, Xn:l,xn:0F Woue : S
o — O, WOLIt

OP iy, Xin ,Xout
e equipped with equations on derivable effect terms
Algebraic operations:
Nk Vi I[W/xy] THC T,x:0[W/xw, V/Xin] | Wout[W /X, ...] e M :
[Wk opS(x.M) : C

[

Generic effects:
N Vo I[W/xa]

| Wt genop,, : X x: O[W /xw, V /xin] - FWout[W /x00, V. /imsx/ 3ou] L

Result: Such alg. ops. and gen. effs. are in 1-1 relationship

Note: Currently working on equipping W's with order/morphisms

