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Today’s plan

Computational effects and external resources in PL

Issues with standard approaches to external resources

Runners — a natural model for top-level runtime

T-runners — for also modelling non-top-level runtimes

Turning T-runners into a useful programming construct

Demonstrate the use of runners through programming examples



Computational effects
and

external resources
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Computational effects in PL

e Using monads (as in HASKELL)

type St a = String — (a,String)
instance St Monad where

f:Sta— St(a,a)
fc=c >>= (\x—c >>= (\y— return (xy)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)
effect Get : unit — int

effect Put : int — unit

let g (c:unit — al{Get,Put}) : int > a*int! {} =
with st_handler handle (perform (Put 42); c ())



Computational effects in PL

e Using monads (as in HASKELL)

type St a = String — (a,String)
instance St Monad where

f:Sta— St(a,a)
fc=c >>= (\x—c >>= (\y— return (xy)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : unit — int
effect Put : int — unit

let g (c:unit — al{Get,Put}) : int > a*int! {} =
with st_handler handle (perform (Put 42); c ())

e Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?
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External resources in PL

e Declare a signature of monads or algebraic effects, e.g.,

(* System.lO x)
type 10 a
openFile :: FilePath — IOMode — 10 Handle

(* pervasives.eff x)
effect Randomlnt : int — int
effect RandomFloat : float — float

e And then treat them specially in the compiler, e.g., in EFF

(* eff/src/backends/runtime/eval.ml %)
let rec top_handle op =
match op with
| Value v — v
| Call (Randomlnt, v, k) —
top_handle (k (Const.of_integer (Random.int (Value.to_int v))))



External resources in PL

e Declare a signature of monads or algebraic effects, e.g.,

(* System.lO x)
type 10 a
openFile :: FilePath — IOMode — 10 Handle

(* pervasives.eff x)
effect Randomlnt : int — int
effect RandomFloat : float — float

e And then treat them specially in the compiler, e.g., in EFF

(* eff/src/backends/runtime/eval.ml %)
let rec top_handle op =
match op with
| Value v — v
| Call (Randomlnt, v, k) —
top_handle (k (Const.of_integer (Random.int (Value.to_int v))))

but there are some issues with that approach ...
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e external resources hard-coded into the top-level runtime

e non-trivial to change what's available and how it's implemented
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e external resources hard-coded into the top-level runtime

e non-trivial to change what's available and how it's implemented

l Ohad &8 8:35PM
So here's the hack | added{We should do something a bit more principled
In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

| "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;0pen_append
;0pen_creat
;Open_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)




First issue

e Difficult to cover all possible use cases

e external resources hard-coded into the top-level runtime

e non-trivial to change what's available and how it's implemented

l Ohad &8 8:35PM
So here's the hack | added{We should do something a bit more principled

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

| "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;0pen_append
;0pen_creat
;Open_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)
)

This work — a principled modular (co)algebraic approach!



Second issue

e Lack of linearity for external resources

let f (s:string) =
let fh = fopen "foo.txt” in
fwrite (fh,s"s);
fclose fh;
return fh

letgs =
let fh = f s in fread fh (* fh not open any more ! x)



Second issue

e Lack of linearity for external resources

let f (s:string) =
let fh = fopen "foo.txt” in
fwrite (fh,s"s);
fclose fh;
return fh

let gs =
let fh = f s in fread fh (* fh not open any more ! x)
e We shall address these kinds of issues indirectly (!),

e by not introducing a linear typing discipline

e but instead we make it convenient to hide external resources

(addressing stronger typing disciplines in the future)
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Third issue

e Excessive generality of effect handlers

let f (s:string) =
let fh = fopen "foo.txt" in
fwrite (fh,s"s);
fclose fh

let h = handler { fwrite (fh,s) k — return () }

e But misuse of external resources can also be purely accidental

let nd_handler =
handler { choose () k — return (k true ++ k false) }

let g (sl s2:string) =
let fh = fopen "foo.txt” in
let b = choose () in
if b then (fwrite (fh,s17s2)) else (fwrite (fh,s2"s1));
fclose fh



Third issue

e Excessive generality of effect handlers

let f (s:string) =
let fh = fopen "foo.txt" in
fwrite (fh,s"s);
fclose fh

let h = handler { fwrite (fh,s) k — return () }

e We shall address these kinds of issues directly (!!),
e by proposing a restricted form of handlers for resources
e that support controlled initialisation and finalisation,

e (and limit how general handlers can be used)
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e Given a signature! ¥ of operation symbols (Aop, Bop are sets)
op : Agp ~ Byp
a runner® R for ¥ is given by a carrier |R| and co-operations

(OTJR D Aop X |R| —> Bop x |R|>

opeX

where we think of |R| as a set of runtime configurations

1We consider runners for signatures, but the work generalises to alg. theories.
2|n the literature also known as comodels for ¥ (or for an algebraic theory).



A natural model of top-level runtime

e Given a signature! ¥ of operation symbols (Aop, Bop are sets)
op : Agp ~ Bop
a runner® R for ¥ is given by a carrier |R| and co-operations

(OTJR D Aop X |R| —> Bop x |R|>

opeX

where we think of |R| as a set of runtime configurations

e For example, a natural runner R for S-valued state signature
{ get:1~~S | set:S~1 }
is given by

e _ ef — ef
|R‘ d:f S getR (*a 5) E (57 5) setr (Sl, 5) E (*, 5/)

1We consider runners for signatures, but the work generalises to alg. theories.
2|n the literature also known as comodels for ¥ (or for an algebraic theory).
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e Runners/comodels have been used for

e operational semantics using tensors of models and comodels
[Plotkin and Power '08]

e top-level implementation of algebraic effects in EFF

[Bauer and Pretnar '15]
and

e stateful running of algebraic effects [Uustalu '15]

¢ linear-use state-passing translation
[Mggelberg and Staton '11, '14]



A natural model of top-level runtime ctd.

e Runners/comodels have been used for
e operational semantics using tensors of models and comodels
[Plotkin and Power '08]

e top-level implementation of algebraic effects in EFF
[Bauer and Pretnar '15]
and

o stateful running of algebraic effects [Uustalu "15]

¢ linear-use state-passing translation
[Mggelberg and Staton '11, '14]

e The latter explicitly rely on one-to-one correspondence between

e runners R

3

e monad morphisms® r: Frees(—) — Stz

3Freex (X) is the free monad ind. defined with leaves val x and nodes op(a, k).
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A natural model of top-level runtime ctd.

e So, runners R are a natural model of top-level runtime

e But what if this runtime is not **the** runtime?
e hardware vs OSs
e OSs vs VMs
e VMs vs sandboxes
but also

e browsers vs web pages

e Unfortunately, runners, as defined above, are not readily able to
e use external resources

e signal failure caused by unavoidable circumstances

e But is there a useful generalisation that would achieve this?
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Effectful runners for modular top-levels

e Mggelberg and Staton usefully observed that a runner R
is equivalently simply a family of generic effects for Stz, i.e.,

(FPR : AOP 7 St‘R‘ BOP)opeZ

e Building on this, we define a T-runner R for ¥ to be given by

(oT)72 Ay —> T Bop)

opeX

e The one-to-one correspondence with monad morphisms
r:Frees(—) — T

simply amounts to the universal property of free models, i.e.,

rx (valx) = nx x rx (op(a, k) = (rx o x)'(opy a)

e Observe that « appears in a tail call position on the right!
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e We want a runner to be a bit like a kernel of an OS, i.e., to
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@iii) signal failure caused by unavoidable circumstances

e Algebraically (and pragmatically), this amounts to taking
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(i) op : Aop ~ Bop (op € ¥/, for some external ¥')
@iy kill : S~ 0
s.t., (i) satisfy state equations; and (i) commute with (i) and i)



Effectful runners for modular top-levels ctd.

e What would be a useful class of monads T to use?

e We want a runner to be a bit like a kernel of an OS, i.e., to
(i) provide management of (internal) resources
(i) use further external resources

@iii) signal failure caused by unavoidable circumstances

e Algebraically (and pragmatically), this amounts to taking
(i) getenv:1~C & setenv:C~1
(i) op : Aop ~ Bop (op € ¥/, for some external ¥')
@iy kill : S~ 0

s.t., (i) satisfy state equations; and (i) commute with (i) and i)

e The induced monad is then isomorphic to

TX < C=Freex((XxC)+5)
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Effectful runners for modular top-levels ctd.
e The corresponding T-runners R for ¥ are then of the form

(@R : Agp —> C = Freex/ ((Bop x C) + S))

opeX
e Observe that raising signals in S discards the state,

but not all problems are terminal—they can be recovered from

e Our solution: consider signatures ¥ with operation symbols
op : Aop ~ Bop + Eqp (which we write as  op : Agp ~» Bop | Eop)
e With this, our T-runners R for X are (with “primitive” excs.)

_ S 1Ep4 S
(opR D Agp — K¢ & BoP)opeZ

where we call KZ'54° a kernel monad (the sum of T and excs.)

K)EI!EMS Bop &= Freez'(((Bop + EOP) x C) + 5)
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T-runners as a programming construct

e First, we include T-runners for X

_ SEp4 S
(opR DA — K¢ & BoP)opez

in our language as values, and co-ops. as kernel code, i.e.,

let R =runner { op; xy > Ky , ... , opaxa > K, } @C



T-runners as a programming construct

e First, we include T-runners for X
__ YE4S
(OPR : Aoy — K B°P)
opeX
in our language as values, and co-ops. as kernel code, i.e.,

let R=runner { op; xy > Ky , ... , opnxn =K, } @C

e For instance, we can implement a write-only file handle as

let Rey = runner {
write s — if (length s > maxSize)
then (raise WriteSizeExceeded)
else (let th = getenv () in
if (isValid th) then (fwrite (fh,s)) else (kill IOError))
} @ FileHandle

where def _ _ o
Y = { write: String ~» 1! E U {WriteSizeExceeded} }

(fwrite : FileHandle x String ~ 11 E) € ¥/ S = { |OError }
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e We make use of it to enable programmers to run user code:

using R @ Mj;

run M

finally {return x @ ¢ > M,e; , ... raisee @ ¢ —> M, ..., ... kill s > Mg ...}
where (a user monad)
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Controlled initialisation and finalisation

e Recall that the components rx of the monad morphism

initialisation R W finalisation
— o r:Frees(—) — T o e

induced by a T-runner R are all tail-recursive

e We make use of it to enable programmers to run user code:

using R @ Mj;

run M

finally {return x @ ¢ > M,e; , ... raisee @ ¢ —> M, ..., ... kill s > Mg ...}
where (a user monad)

e Ms are user code, modelled using UT'E X & Frees (X + E)
o Mt produces the initial kernel state
e M is the user code being run using the runner R

o Miet, M, Mg finalise for return values, exceptions, and signals



Controlled initialisation and finalisation

e Recall that the components rx of the monad morphism

initialisation R W finalisation
— o r:Frees(—) — T o e

induced by a T-runner R are all tail-recursive

e We make use of it to enable programmers to run user code:

using R @ Mj;

run M

finally {return x @ ¢ > M,e; , ... raisee @ ¢ —> M, ..., ... kill s > Mg ...}
where (a user monad)

e Ms are user code, modelled using UT'E X & Frees (X + E)

o Mt produces the initial kernel state

e M is the user code being run using the runner R

o Miet, M, Mg finalise for return values, exceptions, and signals

e Mt and M. depend on the final state c, but Mg does not



Controlled initialisation and finalisation ctd.

e For instance, we can define a PYTHON-esque with construct
with fileName do M

using Rgy @ (fopen fileName)
run M
finally {
return x @ th — fclose fh; return x ,
raise WriteSizeExceeded @ fh — fclose fh; return () ,
raise e @ fh — fclose fh; raise e , (x other exceptions in E are re-raised )
kill 10Error — ... }



Controlled initialisation and finalisation ctd.

e For instance, we can define a PYTHON-esque with construct
with fileName do M

using Rgy @ (fopen fileName)
run M
finally {
return x @ th — fclose fh; return x ,
raise WriteSizeExceeded @ fh — fclose fh; return () ,
raise e @ fh — fclose fh; raise e , (x other exceptions in E are re-raised )

kill 10Error — ... }
e the file handle is hidden from M

e M can only call write : String ~~ 1 | E U {WriteSizeExceeded}

but not (the external operations) fopen, fclose, and fwrite

e fopen and fclose are limited to initialisation-finalisation

e M can itself also catch WriteSizeExceeded to re-try writing



A core calculus for
programming with runners



Core calculus (syntax)



Core calculus (syntax)

e Ground types (types of operations and kernel state)

ABC == B|1|0| AxB| A+B
e Types
X,Y == B|1]0]| XxY | X+Y
| X VYIE
| X YIE4S@C
| EI=¥Y4S5@C
e Values
rN=v:X

User computations
r=EM:X!E

Kernel computations

rEK:X'EsS@C



Core calculus (user computations)

M,N :=returnV value
| try M with {returnz — N, (raise € — Ne)cer} exception handler
| vw application
| match V with {(z, y) — M} product elimination
| match V with {}x empty elimination
| match V with {inl & — M, inr y — N} sum elimination
| opx (V, (x. M), (Ne)eck,,) operation call
| raisex e raise exception
| using V.@QW run M finally { run

returnxz @ c — N,
(raise e @ ¢ — Ne)ecr,
(kill s — Ng)ses}
| kernel K@V finally { switch to kernel mode
returnx Q¢ — N,
(raisee @ ¢ — Ne)eck,
(kill s > Ng)ses}



Core calculus (kernel computations)

K, L :

returng V-

try K with {return z — L, (raisee — L¢)ecr}
Vw

match V with {(z,y) — K}

match V with {} xac

match V with {inl x — K, inr y — L}
obxac(V; (@ K), (Lo)ecrsy)
raisexac e

killxac s

getenve(c. K)

setenv(V, K)

user M with {return z — K, (raise e — L¢)ccr}

value

exception handler
application
product elimination
empty elimination
sum elimination
operation call
raise exception
send signal

get state

set state

switch to user mode
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Core calculus (type system and eq. theory)

e For example, the typing rule for running user comps. is

TMFV:¥I=Y45S0C TFW:C
FTEM:X'E T[,x:X,c:CE N, : Y!FE
Mc:CEN:Y ! E) (TEN;: Y E)

I & using V @ W run M finally { return x @ ¢ — N, ,

(raise e@c— Ne)eeE ,
(kill s +— Ns)seS }oYLE

ecE seS




Core calculus (type system and eq. theory)

e For example, the typing rule for running user comps. is

TMFV:¥I=Y45S0C TFW:C
FTEM:X'E T[,x:X,c:CE N, : Y!FE
Mc:CEN:Y ! E) (TEN;: Y E)

I & using V @ W run M finally { return x @ ¢ — N, ,

(raise e @ c— Ne)__p »
(Kill s> Ny) o }: Y 1 E

ecE seS

e and the main [-equation for running user comps. is

[ & using R @ W run (opy (V, (y.M), (Me)eeg,,)) finally F
= kernel Kop[V/Xop] @ W finally {
return y @ ¢’ — using R @ ¢’ run M finally F |
(raise e @ ¢’ > using R @ ¢’ run M, finally F)
(kill s —> Ny)_ }: Y1 E

ecky,



Core calculus (type system and eq. theory)
e The calculus also includes subtyping, and subsumption rules

rN-Vv:A A< B
r-Vv:B

Fr’EM:A'E  YcY A< B EcCFE
re&mM:BIFE

r’EK:AlEsS@C Yoy
A< B EcCFE S5cs c=C
rEK:BIE §5@C




Core calculus (type system and eq. theory)
e The calculus also includes subtyping, and subsumption rules

rN-Vv:A A< B
r-Vv:B

Fr’EM:A'E  YcY A< B EcCFE
re&mM:BIFE

r’EK:AlEsS@C Yoy
A< B EcCFE S5cs c=C
rEK:BIE §5@C

e We use C = C’ to have (standard) proof-irrelevant subtyping

e Otherwise, instead of just C <: C’, we would need a lens C' — C



Core calculus (semantics)



Core calculus (semantics)

e Monadic semantics, for concreteness in Set, using
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= Frees (X +E)
¢ kernel monads K?EésX g = Frees (X + E) x C) + 5)

e user monads UX'E X



Core calculus (semantics)

e Monadic semantics, for concreteness in Set, using

e user monads U™'E X £ Frees (X + E)

¢ kernel monads K?EéSX g = Frees (X + E) x C) + 5)

e (At a high level) the judgements are interpreted as
M= VX011 — X1
[FTEM:X!E]: ] — UME[X]

[[I'EK:X!EéS@C]];[[r]]_,KE!Cﬁ‘]és[[X]]



Core calculus (semantics ctd.)

e However, to prove coherence of the semantics (subtyping!),
we actually give the semantics in the subset fibration



Core calculus (semantics ctd.)

e However, to prove coherence of the semantics (subtyping!),
we actually give the semantics in the subset fibration

e For instance, kernel computations are interpreted as

x .
[[r]] [TEK:X'E;SQC] Kz!EéS[[X]]

Cl <l lc

s OIE4S+H X T yrs
[Ir=11 Ire K : Xs@CJ] K[IICJ]] [1X*1i

where [* = K : X* @ C is a skeletal kernel typing judgement



Core calculus (semantics ctd.)

e However, to prove coherence of the semantics (subtyping!),
we actually give the semantics in the subset fibration

e For instance, kernel computations are interpreted as

x .
[[r]] [TEK:X'E;SQC] Kz!EéS[[X]]

Cl <l lc

s OIE4S+H X T yrs
[Ir=11 Ire K : Xs@CJ] K[IICJ]] [1X*1i

where [* = K : X* @ C is a skeletal kernel typing judgement

e No essential obstacles to extending to Sub(Cpo) and beyond



Core calculus (semantics ctd.)

e However, to prove coherence of the semantics (subtyping!),
we actually give the semantics in the subset fibration

e For instance, kernel computations are interpreted as

[FTEK:X!EsS@C]
[r] Kiep *IXT

cl E

s OIE4S+H X T yrs
[Ir=11 Ire K : Xs@CJ] K[IICJ]] [1X*1i

where [* = K : X* @ C is a skeletal kernel typing judgement
e No essential obstacles to extending to Sub(Cpo) and beyond

e Ground type restriction on C needed to stay within Sub(...)

e Otherwise, analogously to subtyping, we'd need lenses instead
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Experimenting with the theory in practice

e A small experimental language Coopr*

e Implements the core calculus with few extras
e The interpreter is directly based on the denotational semantics

e Top-level containers for running external (OCaml) code

o A HASKELL library HASKELL-COOP

A shallow-embedding of the core calculus in HASKELL

Uses one of the Freer monad implementations underneath

Again, the operational aspects implement the denot. semantics

Top-level containers for arbitrary HASKELL monads

e Examples make use of HASKELL's features (GADTs, ...)

e Both still need some finishing touches, but will be public soon

4coo ku: — a cage where small animals are kept, especially chickens
p p g
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Runners can be vertically nested

e using Rey @ (fopen fileName)
run (
using Rec @ (return ")
run M
finally {
return x @ str — write str; return x ,
raise WriteSizeExceeded @ str — write str; raise WriteSizeExceeded }
)
finally {
return x @ fh — ..., raise e @ fh — ..., kill IOError — ... }

where the file contents runner (with ¥’ = {}) is defined as

let Rec = runner {
write str' — let str = getenv () in
if (length (strstr') > max) then (raise WriteSizeExceeded)
else (setenv (str”str'))
} @ String
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Vertical nesting for instrumentation

® using Rspifer @ (return 0)
run M
finally {
return x @ c —
let th = fopen "nsa.txt” in fwrite (fh,toStr c); fclose fh; return x }

where the instrumenting runner is defined as

let Rspiffer = runner {

op a — let c = getenv () in
setenv (c + 1);
op a, (* forwards op outwards *)

} @ Nat
e The runner Rsyifrer implements the same sig. & that M is using

e As a result, the runner Rspifer is invisible from M 's viewpoint



Vertical nesting for active monitoring



Vertical nesting for active monitoring

e First, we define a runner for integer-valued ML-style state as

type IntHeap = (Nat — (Int 4+ 1)) x Nat type Ref = Nat
let Rintstate = runner {
alloc x — let h = getenv () in (* alloc : Int ~~ Ref ! {} %)
let (r,h') = heapAlloc h x in
setenv h';
return r
deref r — let h = getenv () in (* deref : Ref ~~ Int ! {} %)

match (heapSel h r) with
| inl x — return x
| inr () — kill ReferenceDoesNotExist ,

assign ry — let h = getenv () in (* assign : Ref x Int ~» 1| {} %)
match (heapUpd h r y) with
| inl h' — setenv h'
| inr () — kill ReferenceDoesNotExist
} @ IntHeap
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e Next we define a runner for monotonicity layer on top of Rjistate



Vertical nesting for active monitoring ctd.

e Next we define a runner for monotonicity layer on top of Rjistate
type MonMemory = Ref — ((Int — Int — Bool) + 1)

let Rvonstate = runner {
mAlloc x rel — let r = alloc x in (* : Int x Ord ~ Ref | {} %)
let m = getenv () in
setenv (memAdd m r rel);

return r,
mDeref r — deref r , (* monDeref : Ref ~~ Int ! {} %)
mAssign r y — let x = deref r in (* : Ref x Int ~» 1 I {MV} %)

let m = getenv () in
match (memSel m r) with
| inl rel — if (rel x y)
then (assign ry)
else (raise MonotonicityViolation)
| inr — kill PreorderDoesNotExist
} @ MonMemory
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e We can then perform runtime monotonicity verification as



Vertical nesting for active monitoring ctd.

e We can then perform runtime monotonicity verification as

using Ripstate @ ((fun — — inr ()) , 0) (* init. empty ML—style heap *)
run (

using Ruonstate @ (fun — — inr ()) (* init. empty preorders memory )
run (

let r = mAlloc 0 (<) in

mAssign r 1;
mAssign r 0; (* RMonstate raises MonotonicityViolation exception *)
mAssign r 2

finally { ... , raise MonotonicityViolaton @ m — ..., ... }

)
finally { ... }
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Runners can also be horizontally paired

e Given runners for ¥ and ¥’

let Ry =runner { ... , opix—> Ky , ...} @C
let R, =runner { ... | opyjx— Ky , ...} @C

we can pair them to get a runner for ¥ + ¥’

let R = runner { ...,
opyi X — let (c,c') = getenv () in
user (kernel (K3 x) @ c finally {
return y @ c'"' — return (inl (inl y,c")),

raise e @ c'' — return (inl (inr e,c")), (x e€ Ep, *)
kill s — return (inr s) } (x se Sy *)
finally {

return (inl (inl y,c'')) — setenv (c",c'); return y,
return (inl (inr e,c'')) — setenv (c",c'); raise e,
return (inr s) — kill s },

EEa

op2j X — ..., (* analogously to above, just on 2nd comp. of state x)
} © Cl X CQ



Runners can also be horizontally paired

e Given runners for ¥ and ¥’

let Ry =runner { ... , opix—> Ky , ...} @C
let R, =runner { ... | opyjx— Ky , ...} @C

we can pair them to get a runner for ¥ + ¥’

let R = runner { ...,
opyi X — let (c,c') = getenv () in
user (kernel (K3 x) @ c finally {
return y @ c'"' — return (inl (inl y,c")),

raise e @ c'' — return (inl (inr e,c")), (x e€ Ep, *)
kill s — return (inr s) } (x se Sy *)
finally {

return (inl (inl y,c'')) — setenv (c",c'); return y,
return (inl (inr e,c'')) — setenv (c",c'); raise e,
return (inr s) — kill s },

EEa

op2j X — ..., (* analogously to above, just on 2nd comp. of state x)
} © Cl X CQ

e For instance, this way we can build a runner for IO and state
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Other examples (in HASKELL)

e More general forms of (ML-style) state (for general Ref A )

if the host language allows it, we use GADTs, etc for safety

some examples extract a footprint from a larger memory

o Combinations of different effects and runners

in particular the combination of 10 and state

good use case for both vertical and horizontal composition

¢ KOKA-style ambient values and ambient functions

ambient values are essentially mutable variables/parameters
ambient functions are applied in their lexical context

a runner that treats amb. fun. application as a co-operation
amb. funs. are stored in a context-depth-sensitive heap

the appl. co-operation restores the heap to the lexical context



Other examples (ambient functions)

module Control.Runner.Ambients

ambCoOps :: Amb a -> Kernel sig AmbHeap a
ambCoOps (Bind f) =
do h <- getEnv;
(f,h') <- return CambHeapAlloc h f);
setEnv h';
return f
ambCoOps (Apply f x) =
do h <- getEnv;
(f,d) <- return (ambHeapSel h f (depth h));
user
(run
ambRunner
Creturn Ch {depth = d}))
o x
ambFinaliser)
return
ambCoOps (Rebind f g) =
do h <- getEnv;
setEnv (ambHeapUpd h f @)

ambRunner :: Runner '[Amb] sig AmbHeap
ambRunner = mkRunhner ambCoOps

module AmbientsTests where

import Control.Runner
import Control.Runner.Ambients

ambFun :: AmbVal Int -> Int -> AmbEff Int
ambFun x y =
do x <- getVal x;
return (x + y)
testl :: AmbEff Int
testl =
withAmbVal
4 :: Int)
A x >
withAmbFun
CambFun x)
QA f >
do rebindval x 2;
applyFun f 1))

test2 = ambToplLevel testl



Wrapping up
e Runners are a natural model of top-level runtime
e We propose T-runners to also model non-top-level runtimes

e We have turned T-runners into a (practical ?) programming
construct, that supports controlled initialisation and finalisation

e | showed you some combinators and programming examples
e Two implementations in the works, CooP & HASKELL-COOP

e Ongoing and future: lenses in subtyping and semantics, cat. of

runners, handlers, case studies, refinement typing, compilation, ...

This project has received funding from the European Union's Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-17-1-0326.






Core calculus (semantics ctd.)

[T & using V @ W run M finally { return x © ¢ — N ,
(raise e@c— Ne)eeE ,

(kills —> N,) o }: Y LET, < ..

o VI = R = (opr [Aop] — Kie5** [Bop])
e [WI, <[]

o [M], € UTE[A]

o [return x @ c — Nty € [A] x [C] — UT'E'[B]
o [(raise e @ c > No)ece]l, € E x [C] — UT'E'[B]
o [[(kill s — Ny)ses]l, € S— UT'E'[B]

opeX

allowing us to use the free model property to get

UZ!E[[A]] AT +E K): ‘Eés[[A]] (A[NweeDl1)*

[cl —= [C] = U"'E'[B]

and then apply the resulting composite to [M], and [W],



