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Today’s plan

‚ Computational effects and external resources in PL

‚ Issues with standard approaches to external resources

‚ Runners – a natural model for top-level runtime

‚ T-runners – for also modelling non-top-level runtimes

‚ Turning T-runners into a useful programming construct

‚ Demonstrate the use of runners through programming examples



Computational effects

and

external resources



Computational effects in PL

‚ Using monads (as in Haskell)

type St a = String Ñ (a,String)
instance St Monad where

...

f :: St a Ñ St (a,a)
f c = c ąą“ (\ x Ñ c ąą“ (\ y Ñ return (x,y)))

‚ Using alg. effects and handlers (as in Eff, Frank, Koka)

effect Get : unit Ñ int
effect Put : int Ñ unit

let g (c:unit Ñ a!{Get,Put}) : int Ñ a ∗ int ! {} =
with st handler handle (perform (Put 42); c ())

‚ Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?
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External resources in PL
‚ Declare a signature of monads or algebraic effects, e.g.,

(∗ System.IO ∗)
type IO a
openFile :: FilePath Ñ IOMode Ñ IO Handle

(∗ pervasives.eff ∗)
effect RandomInt : int Ñ int
effect RandomFloat : float Ñ float

‚ And then treat them specially in the compiler, e.g., in Eff

(∗ eff/src/backends/runtime/eval.ml ∗)
let rec top handle op =

match op with
| Value v Ñ v
| Call (RandomInt, v, k) Ñ

top handle (k (Const.of integer (Random.int (Value.to int v))))
| ...

but there are some issues with that approach . . .
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First issue

‚ Difficult to cover all possible use cases

‚ external resources hard-coded into the top-level runtime

‚ non-trivial to change what’s available and how it’s implemented
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Second issue

‚ Lack of linearity for external resources

let f (s:string) =
let fh = fopen ”foo.txt” in
fwrite (fh,sˆs);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (∗ fh not open any more ! ∗)

‚ We shall address these kinds of issues indirectly (!),

‚ by not introducing a linear typing discipline

‚ but instead we make it convenient to hide external resources

(addressing stronger typing disciplines in the future)
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Third issue

‚ Excessive generality of effect handlers

let f (s:string) =
let fh = fopen ”foo.txt” in
fwrite (fh,sˆs);
fclose fh

let h = handler { fwrite (fh,s) k Ñ return () }

‚ But misuse of external resources can also be purely accidental

let nd handler =
handler { choose () k Ñ return (k true `̀ k false) }

let g (s1 s2:string) =
let fh = fopen ”foo.txt” in
let b = choose () in
if b then (fwrite (fh,s1ˆs2)) else (fwrite (fh,s2ˆs1));
fclose fh
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Third issue

‚ Excessive generality of effect handlers

let f (s:string) =
let fh = fopen ”foo.txt” in
fwrite (fh,sˆs);
fclose fh

let h = handler { fwrite (fh,s) k Ñ return () }

‚ We shall address these kinds of issues directly (!!),

‚ by proposing a restricted form of handlers for resources

‚ that support controlled initialisation and finalisation,

‚ (and limit how general handlers can be used)



Runners



A natural model of top-level runtime

‚ Given a signature Σ of operation symbols (Aop,Bop are sets)

op : Aop  Bop

a runner R for Σ is given by a carrier |R| and co-operations
´

opR : Aop ˆ |R| ÝÑ Bop ˆ |R|
¯

opPΣ

where we think of |R| as a set of runtime configurations

‚ For example, a natural runner R for S-valued state signature
!

get : 1 S , set : S  1
)

is given by

|R| def
“ S getR p‹, sq

def
“ ps, sq setR ps

1, sq
def
“ p‹, s 1q
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A natural model of top-level runtime ctd.

‚ Runners/comodels have been used for

‚ operational semantics using tensors of models and comodels
[Plotkin and Power ’08]

‚ top-level implementation of algebraic effects in Eff
[Bauer and Pretnar ’15]

and

‚ stateful running of algebraic effects [Uustalu ’15]

‚ linear-use state-passing translation
[Møgelberg and Staton ’11, ’14]

‚ The latter explicitly rely on one-to-one correspondence between

‚ runners R

‚ monad morphisms r : FreeΣp´q ÝÑ St|R|
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‚ monad morphisms3 r : FreeΣp´q ÝÑ St|R|

3FreeΣpX q is the free monad ind. defined with leaves val x and nodes oppa, κq.



A natural model of top-level runtime ctd.

‚ So, runners R are a natural model of top-level runtime

‚ But what if this runtime is not **the** runtime?

‚ hardware vs OSs

‚ OSs vs VMs

‚ VMs vs sandboxes

but also

‚ browsers vs web pages

‚ . . .

‚ Unfortunately, runners, as defined above, are not readily able to

‚ use external resources

‚ signal failure caused by unavoidable circumstances

‚ But is there a useful generalisation that would achieve this?
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Effectful runners for modular top-levels

‚ Møgelberg and Staton usefully observed that a runner R
is equivalently simply a family of generic effects for St|R|, i.e.,

´
opR : Aop ÝÑ St|R| Bop

¯
opPΣ

‚ Building on this, we define a T-runner R for Σ to be given by
´

opR : Aop ÝÑ TBop

¯
opPΣ

‚ The one-to-one correspondence with monad morphisms

r : FreeΣp´q ÝÑ T

simply amounts to the universal property of free models, i.e.,

rX pval xq “ ηX x rX poppa, κqq “ prX˝q
:popR aqlooooooomooooooon

opMpa,rX˝q

‚ Observe that κ appears in a tail call position on the right!
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Effectful runners for modular top-levels ctd.

‚ What would be a useful class of monads T to use?

‚ We want a runner to be a bit like a kernel of an OS, i.e., to

(i) provide management of (internal) resources

(ii) use further external resources

(iii) signal failure caused by unavoidable circumstances

‚ Algebraically (and pragmatically), this amounts to taking

(i) getenv : 1 C & setenv : C  1

(ii) op : Aop  Bop (op P Σ1, for some external Σ1)

(iii) kill : S  0

s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

‚ The induced monad is then isomorphic to

TX
def
“ C ñ FreeΣ1

`
pX ˆ C q ` S

˘



Effectful runners for modular top-levels ctd.

‚ What would be a useful class of monads T to use?

‚ We want a runner to be a bit like a kernel of an OS, i.e., to

(i) provide management of (internal) resources

(ii) use further external resources

(iii) signal failure caused by unavoidable circumstances

‚ Algebraically (and pragmatically), this amounts to taking

(i) getenv : 1 C & setenv : C  1

(ii) op : Aop  Bop (op P Σ1, for some external Σ1)

(iii) kill : S  0

s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

‚ The induced monad is then isomorphic to

TX
def
“ C ñ FreeΣ1

`
pX ˆ C q ` S

˘



Effectful runners for modular top-levels ctd.

‚ What would be a useful class of monads T to use?

‚ We want a runner to be a bit like a kernel of an OS, i.e., to

(i) provide management of (internal) resources

(ii) use further external resources

(iii) signal failure caused by unavoidable circumstances

‚ Algebraically (and pragmatically), this amounts to taking

(i) getenv : 1 C & setenv : C  1

(ii) op : Aop  Bop (op P Σ1, for some external Σ1)

(iii) kill : S  0

s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

‚ The induced monad is then isomorphic to

TX
def
“ C ñ FreeΣ1

`
pX ˆ C q ` S

˘



Effectful runners for modular top-levels ctd.

‚ What would be a useful class of monads T to use?

‚ We want a runner to be a bit like a kernel of an OS, i.e., to

(i) provide management of (internal) resources

(ii) use further external resources

(iii) signal failure caused by unavoidable circumstances

‚ Algebraically (and pragmatically), this amounts to taking

(i) getenv : 1 C & setenv : C  1

(ii) op : Aop  Bop (op P Σ1, for some external Σ1)

(iii) kill : S  0

s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

‚ The induced monad is then isomorphic to

TX
def
“ C ñ FreeΣ1

`
pX ˆ C q ` S

˘



Effectful runners for modular top-levels ctd.
‚ The corresponding T-runners R for Σ are then of the form

´
opR : Aop ÝÑ C ñ FreeΣ1

`
pBop ˆ C q ` S

˘¯
opPΣ

‚ Observe that raising signals in S discards the state,

but not all problems are terminal—they can be recovered from

‚ Our solution: consider signatures Σ with operation symbols

op : Aop  Bop ` Eop pwhich we write as op : Aop  Bop ! Eopq

‚ With this, our T-runners R for Σ are (with “primitive” excs.)
´

opR : Aop ÝÑ K
Σ1!Eop S
C Bop

¯
opPΣ

where we call KΣ!E S
C a kernel monad (the sum of T and excs.)

K
Σ1!Eop S
C Bop

def
“ C ñ FreeΣ1

`
ppBop ` Eopq ˆ C q ` S

˘
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T-runners as a programming construct

(towards a core calculus for runners)



T-runners as a programming construct

‚ First, we include T-runners for Σ
´

opR : Aop ÝÑ K
Σ1!Eop S
C Bop

¯
opPΣ

in our language as values, and co-ops. as kernel code, i.e.,

let R = runner { op1 x1 Ñ K1 , ... , opn xn Ñ Kn } @ C

‚ For instance, we can implement a write-only file handle as

let RFH = runner {
write s Ñ if (length s > maxSize)

then (raise WriteSizeExceeded)
else (let fh = getenv () in

if (isValid fh) then (fwrite (fh,s)) else (kill IOError))
} @ FileHandle

where
Σ

def
“ t write : String 1 ! E Y tWriteSizeExceededu u

`
fwrite : FileHandleˆ String 1 ! E

˘
P Σ1 S “ t IOError u
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Controlled initialisation and finalisation

‚ Recall that the components rX of the monad morphism

initialisation
´́ ´́ Ý́Ñ “ ˝ ” r : FreeΣp´q ÝÑ T “ ˝ ”

finalisation
´́ ´́ Ý́Ñ

induced by a T-runner R are all tail-recursive

‚ We make use of it to enable programmers to run user code:

using R @ Minit

run M
finally {return x @ c Ñ Mret , ... raise e @ c Ñ Me ... , ... kill s Ñ Ms ...}

where (a user monad)
‚ Ms are user code, modelled using UΣ!E X

def
“ FreeΣpX ` E q

‚ Minit produces the initial kernel state

‚ M is the user code being run using the runner R

‚ Mret, Me, Ms finalise for return values, exceptions, and signals

‚ Mret and Me depend on the final state c, but Ms does not
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‚ Mret, Me, Ms finalise for return values, exceptions, and signals

‚ Mret and Me depend on the final state c, but Ms does not
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Controlled initialisation and finalisation ctd.

‚ For instance, we can define a Python-esque with construct

with fileName do M
=
using RFH @ (fopen fileName)
run M
finally {

return x @ fh Ñ fclose fh; return x ,
raise WriteSizeExceeded @ fh Ñ fclose fh; return () ,
raise e @ fh Ñ fclose fh; raise e , (∗ other exceptions in E are re-raised ∗)
kill IOError Ñ ... }

‚ the file handle is hidden from M

‚ M can only call write : String 1 ! E Y tWriteSizeExceededu

but not (the external operations) fopen , fclose , and fwrite

‚ fopen and fclose are limited to initialisation-finalisation

‚ M can itself also catch WriteSizeExceeded to re-try writing
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A core calculus for
programming with runners



Core calculus (syntax)

‚ Ground types (types of operations and kernel state)

A,B,C ::“ B | 1 | 0 | Aˆ B | A` B

‚ Types
X ,Y ::“ B | 1 | 0 | X ˆ Y | X ` Y

| X
Σ
ÝÑ Y ! E

| X
Σ
ÝÑ Y ! E  S @ C

| Σ ñ Σ1  S @ C

‚ Values
Γ $ V : X

‚ User computations
Γ $Σ M : X ! E

‚ Kernel computations

Γ $Σ K : X ! E  S @ C
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Core calculus (user computations)

12 Danel Ahman and Andrej Bauer

Value

V, W ::“ x variableˇ̌ x y unitˇ̌ xV, W y pairˇ̌
inlX,Y V

ˇ̌
inrX,Y V injectionˇ̌

fun px : Xq fiÑ M user functionˇ̌
funK px : Xq fiÑ K kernel functionˇ̌ tpop x fiÑ KopqopP⌃uC runner

User computation

M, N ::“ return V valueˇ̌
try M with treturn x fiÑ N, praise e fiÑ NeqePEu exception handlerˇ̌
V W applicationˇ̌
match V with txx, yy fiÑ Mu product eliminationˇ̌
match V with tuX empty eliminationˇ̌
match V with tinl x fiÑ M, inr y fiÑ Nu sum eliminationˇ̌
opXpV, px . Mq, pNeqePEopq operation callˇ̌
raiseX e raise exceptionˇ̌
using V @ W run M finally t

return x @ c fiÑ N,

praise e @ c fiÑ NeqePE ,

pkill s fiÑ NsqsPSu

run

ˇ̌
kernel K @ V finally t

return x @ c fiÑ N,

praise e @ c fiÑ NeqePE ,

pkill s fiÑ NsqsPSu

switch to kernel mode

Kernel computation

K, L ::“ returnC V valueˇ̌
try K with treturn x fiÑ L, praise e fiÑ LeqePEu exception handlerˇ̌
V W applicationˇ̌
match V with txx, yy fiÑ Ku product eliminationˇ̌
match V with tuX@C empty eliminationˇ̌
match V with tinl x fiÑ K, inr y fiÑ Lu sum eliminationˇ̌
opX@CpV, px . Kq, pLeqePEopq operation callˇ̌
raiseX@C e raise exceptionˇ̌
killX@C s send signalˇ̌
getenvCpc . Kq get stateˇ̌
setenvpV, Kq set stateˇ̌
user M with treturn x fiÑ K, praise e fiÑ LeqePEu switch to user mode

Fig. 2. Values, user and kernel computations of �coop
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Core calculus (type system and eq. theory)

‚ For example, the typing rule for running user comps. is

Γ $ V : Σ ñ Σ1  S @ C Γ $W : C

Γ $Σ M : X ! E Γ, x :X , c :C $Σ
1

Nret : Y ! E 1
`
Γ, c :C $Σ

1

Ne : Y ! E 1
˘
ePE

`
Γ $Σ

1

Ns : Y ! E 1
˘
sPS

Γ $Σ
1

using V @ W run M finally t return x @ c ÞÑ Nret ,`
raise e @ c ÞÑ Ne

˘
ePE

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1

‚ and the main β-equation for running user comps. is

Γ $Σ
1

using R @ W run popX pV , py .Mq, pMeqePEopqq finally F

” kernel KoprV {xops @ W finally t

return y @ c 1 ÞÑ using R @ c 1 run M finally F ,`
raise e @ c 1 ÞÑ using R @ c 1 run Me finally F

˘
ePEop

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1



Core calculus (type system and eq. theory)

‚ For example, the typing rule for running user comps. is

Γ $ V : Σ ñ Σ1  S @ C Γ $W : C

Γ $Σ M : X ! E Γ, x :X , c :C $Σ
1

Nret : Y ! E 1
`
Γ, c :C $Σ

1

Ne : Y ! E 1
˘
ePE

`
Γ $Σ

1

Ns : Y ! E 1
˘
sPS

Γ $Σ
1

using V @ W run M finally t return x @ c ÞÑ Nret ,`
raise e @ c ÞÑ Ne

˘
ePE

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1

‚ and the main β-equation for running user comps. is

Γ $Σ
1

using R @ W run popX pV , py .Mq, pMeqePEopqq finally F

” kernel KoprV {xops @ W finally t

return y @ c 1 ÞÑ using R @ c 1 run M finally F ,`
raise e @ c 1 ÞÑ using R @ c 1 run Me finally F

˘
ePEop

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1



Core calculus (type system and eq. theory)

‚ For example, the typing rule for running user comps. is

Γ $ V : Σ ñ Σ1  S @ C Γ $W : C

Γ $Σ M : X ! E Γ, x :X , c :C $Σ
1

Nret : Y ! E 1
`
Γ, c :C $Σ

1

Ne : Y ! E 1
˘
ePE

`
Γ $Σ

1

Ns : Y ! E 1
˘
sPS

Γ $Σ
1

using V @ W run M finally t return x @ c ÞÑ Nret ,`
raise e @ c ÞÑ Ne

˘
ePE

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1

‚ and the main β-equation for running user comps. is

Γ $Σ
1

using R @ W run popX pV , py .Mq, pMeqePEopqq finally F

” kernel KoprV {xops @ W finally t

return y @ c 1 ÞÑ using R @ c 1 run M finally F ,`
raise e @ c 1 ÞÑ using R @ c 1 run Me finally F

˘
ePEop

,`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1



Core calculus (type system and eq. theory)

‚ The calculus also includes subtyping, and subsumption rules

Γ $ V : A A ă: B
Γ $ V : B

Γ $Σ M : A ! E Σ Ď Σ1 A ă: B E Ď E 1

Γ $Σ
1

M : B ! E 1

Γ $Σ K : A ! E  S @ C Σ Ď Σ1

A ă: B E Ď E 1 S Ď S 1 C “ C 1

Γ $Σ
1

K : B ! E 1  S 1 @ C 1

‚ We use C “ C 1 to have (standard) proof-irrelevant subtyping

‚ Otherwise, instead of just C ă: C 1, we would need a lens C 1 Ø C
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Core calculus (semantics)

‚ Monadic semantics, for concreteness in Set, using

‚ user monads UΣ!E X
def
“ FreeΣpX ` E q

‚ kernel monads KΣ!E S
C X

def
“ C ñ FreeΣ

`
ppX ` E q ˆ C q ` S

˘

‚ (At a high level) the judgements are interpreted as

rrΓ $ V : X ss : rrΓss ÝÑ rrX ss

rrΓ $Σ M : X ! E ss : rrΓss ÝÑ UΣ!E rrX ss

rrΓ $Σ K : X ! E  S @ C ss : rrΓss ÝÑ KΣ!E S
rrCss rrX ss



Core calculus (semantics)

‚ Monadic semantics, for concreteness in Set, using

‚ user monads UΣ!E X
def
“ FreeΣpX ` E q

‚ kernel monads KΣ!E S
C X

def
“ C ñ FreeΣ

`
ppX ` E q ˆ C q ` S

˘

‚ (At a high level) the judgements are interpreted as

rrΓ $ V : X ss : rrΓss ÝÑ rrX ss

rrΓ $Σ M : X ! E ss : rrΓss ÝÑ UΣ!E rrX ss

rrΓ $Σ K : X ! E  S @ C ss : rrΓss ÝÑ KΣ!E S
rrCss rrX ss



Core calculus (semantics)

‚ Monadic semantics, for concreteness in Set, using

‚ user monads UΣ!E X
def
“ FreeΣpX ` E q

‚ kernel monads KΣ!E S
C X

def
“ C ñ FreeΣ

`
ppX ` E q ˆ C q ` S

˘

‚ (At a high level) the judgements are interpreted as

rrΓ $ V : X ss : rrΓss ÝÑ rrX ss

rrΓ $Σ M : X ! E ss : rrΓss ÝÑ UΣ!E rrX ss

rrΓ $Σ K : X ! E  S @ C ss : rrΓss ÝÑ KΣ!E S
rrCss rrX ss



Core calculus (semantics ctd.)

‚ However, to prove coherence of the semantics (subtyping!),

we actually give the semantics in the subset fibration

‚ For instance, kernel computations are interpreted as

rrΓss

Ď

��

rrΓ$Σ K : X !E  S @C ss
// KΣ!E S
rrC ss rrX ss

Ď

��

rrrΓssss
rrrΓs $ K : X s @C sss

// KO!E S`tOu
rrrC sss rrrX ssss

where Γs $ K : X s @ C is a skeletal kernel typing judgement

‚ No essential obstacles to extending to SubpCpoq and beyond

‚ Ground type restriction on C needed to stay within Subp. . .q

‚ Otherwise, analogously to subtyping, we’d need lenses instead



Core calculus (semantics ctd.)

‚ However, to prove coherence of the semantics (subtyping!),

we actually give the semantics in the subset fibration

‚ For instance, kernel computations are interpreted as

rrΓss

Ď

��

rrΓ$Σ K : X !E  S @C ss
// KΣ!E S
rrC ss rrX ss

Ď

��

rrrΓssss
rrrΓs $ K : X s @C sss

// KO!E S`tOu
rrrC sss rrrX ssss

where Γs $ K : X s @ C is a skeletal kernel typing judgement

‚ No essential obstacles to extending to SubpCpoq and beyond

‚ Ground type restriction on C needed to stay within Subp. . .q

‚ Otherwise, analogously to subtyping, we’d need lenses instead



Core calculus (semantics ctd.)

‚ However, to prove coherence of the semantics (subtyping!),

we actually give the semantics in the subset fibration

‚ For instance, kernel computations are interpreted as

rrΓss

Ď

��

rrΓ$Σ K : X !E  S @C ss
// KΣ!E S
rrC ss rrX ss

Ď

��

rrrΓssss
rrrΓs $ K : X s @C sss

// KO!E S`tOu
rrrC sss rrrX ssss

where Γs $ K : X s @ C is a skeletal kernel typing judgement

‚ No essential obstacles to extending to SubpCpoq and beyond

‚ Ground type restriction on C needed to stay within Subp. . .q

‚ Otherwise, analogously to subtyping, we’d need lenses instead



Core calculus (semantics ctd.)

‚ However, to prove coherence of the semantics (subtyping!),

we actually give the semantics in the subset fibration

‚ For instance, kernel computations are interpreted as

rrΓss

Ď

��

rrΓ$Σ K : X !E  S @C ss
// KΣ!E S
rrC ss rrX ss

Ď

��

rrrΓssss
rrrΓs $ K : X s @C sss

// KO!E S`tOu
rrrC sss rrrX ssss

where Γs $ K : X s @ C is a skeletal kernel typing judgement

‚ No essential obstacles to extending to SubpCpoq and beyond

‚ Ground type restriction on C needed to stay within Subp. . .q

‚ Otherwise, analogously to subtyping, we’d need lenses instead



Implementing runners



Experimenting with the theory in practice

‚ A small experimental language Coop

‚ Implements the core calculus with few extras

‚ The interpreter is directly based on the denotational semantics

‚ Top-level containers for running external (OCaml) code

‚ A Haskell library Haskell-Coop

‚ A shallow-embedding of the core calculus in Haskell

‚ Uses one of the Freer monad implementations underneath

‚ Again, the operational aspects implement the denot. semantics

‚ Top-level containers for arbitrary Haskell monads

‚ Examples make use of Haskell’s features (GADTs, ...)

‚ Both still need some finishing touches, but will be public soon
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Runners in action



Runners can be vertically nested

‚ using RFH @ (fopen fileName)
run (

using RFC @ (return ””)
run M
finally {

return x @ str Ñ write str; return x ,
raise WriteSizeExceeded @ str Ñ write str; raise WriteSizeExceeded }

)
finally {

return x @ fh Ñ ... , raise e @ fh Ñ ... , kill IOError Ñ ... }

where the file contents runner (with Σ1 “ tu) is defined as

let RFC = runner {
write str' Ñ let str = getenv () in

if (length (strˆstr') > max) then (raise WriteSizeExceeded)
else (setenv (strˆstr'))

} @ String
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Vertical nesting for instrumentation

‚ using RSniffer @ (return 0)
run M
finally {

return x @ c Ñ
let fh = fopen ”nsa.txt” in fwrite (fh,toStr c); fclose fh; return x }

where the instrumenting runner is defined as

let RSniffer = runner {
... ,
op a Ñ let c = getenv () in

setenv (c + 1);
op a , (∗ forwards op outwards ∗)

...
} @ Nat

‚ The runner RSniffer implements the same sig. Σ that M is using

‚ As a result, the runner RSniffer is invisible from M ’s viewpoint
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‚ using RSniffer @ (return 0)
run M
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Vertical nesting for active monitoring
‚ First, we define a runner for integer-valued ML-style state as

type IntHeap = (Nat Ñ (Int + 1)) ˆ Nat type Ref = Nat

let RIntState = runner {
alloc x Ñ let h = getenv () in (∗ alloc : Int  Ref ! tu ∗)

let (r,h') = heapAlloc h x in
setenv h';
return r ,

deref r Ñ let h = getenv () in (∗ deref : Ref  Int ! tu ∗)
match (heapSel h r) with
| inl x Ñ return x
| inr () Ñ kill ReferenceDoesNotExist ,

assign r y Ñ let h = getenv () in (∗ assign : Ref ˆ Int  1 ! tu ∗)
match (heapUpd h r y) with
| inl h' Ñ setenv h'
| inr () Ñ kill ReferenceDoesNotExist

} @ IntHeap
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Vertical nesting for active monitoring ctd.
‚ Next we define a runner for monotonicity layer on top of RIntState

type MonMemory = Ref Ñ ((Int Ñ Int Ñ Bool) + 1)

let RMonState = runner {
mAlloc x rel Ñ let r = alloc x in (∗ : Int ˆ Ord  Ref ! tu ∗)

let m = getenv () in
setenv (memAdd m r rel);
return r,

mDeref r Ñ deref r , (∗ monDeref : Ref  Int ! tu ∗)

mAssign r y Ñ let x = deref r in (∗ : Ref ˆ Int  1 ! {MV} ∗)
let m = getenv () in
match (memSel m r) with
| inl rel Ñ if (rel x y)

then (assign r y)
else (raise MonotonicityViolation)

| inr Ñ kill PreorderDoesNotExist
} @ MonMemory
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let RMonState = runner {
mAlloc x rel Ñ let r = alloc x in (∗ : Int ˆ Ord  Ref ! tu ∗)

let m = getenv () in
setenv (memAdd m r rel);
return r,

mDeref r Ñ deref r , (∗ monDeref : Ref  Int ! tu ∗)

mAssign r y Ñ let x = deref r in (∗ : Ref ˆ Int  1 ! {MV} ∗)
let m = getenv () in
match (memSel m r) with
| inl rel Ñ if (rel x y)

then (assign r y)
else (raise MonotonicityViolation)

| inr Ñ kill PreorderDoesNotExist
} @ MonMemory



Vertical nesting for active monitoring ctd.

‚ We can then perform runtime monotonicity verification as

using RIntState @ ((fun Ñ inr ()) , 0) (∗ init. empty ML´style heap ∗)
run (

using RMonState @ (fun Ñ inr ()) (∗ init. empty preorders memory ∗)
run (

let r = mAlloc 0 (ď) in
mAssign r 1;
mAssign r 0; (∗ RMonState raises MonotonicityViolation exception ∗)
mAssign r 2

)
finally { ... , raise MonotonicityViolation @ m Ñ ... , ... }

)
finally { ... }
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Runners can also be horizontally paired
‚ Given runners for Σ and Σ1

let R1 = runner { ... , op1i x Ñ K1i , ... } @ C1

let R2 = runner { ... , op2j x Ñ K2j , ... } @ C2

we can pair them to get a runner for Σ` Σ1

let R = runner { ... ,
op1i x Ñ let (c,c') = getenv () in

user (kernel (K1i x) @ c finally {
return y @ c'' Ñ return (inl (inl y,c'')),
raise e @ c'' Ñ return (inl (inr e,c'')), (∗ e P Eop1i ∗)
kill s Ñ return (inr s) } (∗ s P S1 ∗)

finally {
return (inl (inl y,c'')) Ñ setenv (c'',c'); return y,
return (inl (inr e,c'')) Ñ setenv (c'',c'); raise e,
return (inr s) Ñ kill s },

... ,
op2j x Ñ ..., (∗ analogously to above, just on 2nd comp. of state ∗)
... } @ C1 ˆ C2

‚ For instance, this way we can build a runner for IO and state
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Other examples (in Haskell)

‚ More general forms of (ML-style) state (for general Ref A )

‚ if the host language allows it, we use GADTs, etc for safety

‚ some examples extract a footprint from a larger memory

‚ Combinations of different effects and runners

‚ in particular the combination of IO and state

‚ good use case for both vertical and horizontal composition

‚ Koka-style ambient values and ambient functions

‚ ambient values are essentially mutable variables/parameters

‚ ambient functions are applied in their lexical context

‚ a runner that treats amb. fun. application as a co-operation

‚ amb. funs. are stored in a context-depth-sensitive heap

‚ the appl. co-operation restores the heap to the lexical context
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Other examples (ambient functions)



Wrapping up

‚ Runners are a natural model of top-level runtime

‚ We propose T-runners to also model non-top-level runtimes

‚ We have turned T-runners into a (practical ?) programming
construct, that supports controlled initialisation and finalisation

‚ I showed you some combinators and programming examples

‚ Two implementations in the works, Coop & Haskell-Coop

‚ Ongoing and future: lenses in subtyping and semantics, cat. of

runners, handlers, case studies, refinement typing, compilation, . . .

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-17-1-0326.





Core calculus (semantics ctd.)

rrΓ $Σ
1

using V @ W run M finally t return x @ c ÞÑ Nret ,`
raise e @ c ÞÑ Ne

˘
ePE

,
`
kill s ÞÑ Ns

˘
sPS

u : Y ! E 1ssγ
def
“ . . .

‚ rrV ssγ “ R “

´
opR : rrAopss ÝÑ K

Σ1!Eop S
rrCss rrBopss

¯
opPΣ

‚ rrW ssγ P rrC ss

‚ rrMssγ P UΣ!E rrAss

‚ rrreturn x @ c Ñ Nretssγ P rrAss ˆ rrC ss ÝÑ UΣ1!E 1 rrBss

‚ rrpraise e @ c Ñ NeqePE ssγ P E ˆ rrC ss ÝÑ UΣ1!E 1 rrBss

‚ rrpkill s Ñ NsqsPS ssγ P S ÝÑ UΣ1!E 1 rrBss

‚ allowing us to use the free model property to get

UΣ!E rrAss
rrrAss`E

// KΣ1!E S
rrCss rrAss

pλrrNret ssγq
;

// rrC ss ñ UΣ1!E 1rrBss

and then apply the resulting composite to rrMssγ and rrW ssγ


