Interacting with external resources using runners (aka comodels)

Danel Ahman
(joint work with Andrej Bauer)

University of Ljubljana, Slovenia

CHoCoLa meeting, Lyon, 17.10.2019

Today's plan

- Computational effects and external resources in PL
- Issues with standard approaches to external resources
- Runners - a natural model for top-level runtime
- T-runners - for also modelling non-top-level runtimes
- Turning T-runners into a useful programming construct
- Demonstrate the use of runners through programming examples

Computational effects

 andexternal resources

Computational effects in PL

Computational effects in PL

- Using monads (as in HASKELL)
type St $\mathrm{a}=$ String \rightarrow (a,String) instance St Monad where

$$
\begin{aligned}
& f:: S t a \rightarrow S t(a, a) \\
& \mathrm{fc}=\mathrm{c} \gg=(\backslash x \rightarrow \mathrm{c} \gg=(\backslash y \rightarrow \text { return }(x, y)))
\end{aligned}
$$

- Using alg. effects and handlers (as in Eff, Frank, Koka) effect Get : unit \rightarrow int effect Put : int \rightarrow unit
let $g(c: u n i t \rightarrow a!\{$ Get,Put $\}):$ int $\rightarrow a *$ int $!\{ \}=$ with st_handler handle (perform (Put 42); c ())

Computational effects in PL

- Using monads (as in Haskell)
type St a $=$ String \rightarrow (a,String) instance St Monad where
$\mathrm{f}:: \mathrm{St} \mathrm{a} \rightarrow \mathrm{St}(\mathrm{a}, \mathrm{a})$
$\mathrm{fc}=\mathrm{c} \quad \gg=(\backslash \mathrm{x} \rightarrow \mathrm{c} \quad \gg=(\backslash \mathrm{y} \rightarrow$ return $(\mathrm{x}, \mathrm{y})))$
- Using alg. effects and handlers (as in Eff, Frank, Koka)
effect Get : unit \rightarrow int effect Put : int \rightarrow unit
let $g(c: u n i t \rightarrow a!\{$ Get,Put $\}):$ int $\rightarrow a *$ int $!\{ \}=$ with st_handler handle (perform (Put 42); c ())
- Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?

External resources in PL

External resources in PL

- Declare a signature of monads or algebraic effects, e.g.,

```
(* System.IO *)
type IO a
openFile :: FilePath }->\mathrm{ IOMode }->\mathrm{ IO Handle
(* pervasives.eff *)
effect RandomInt : int }->\mathrm{ int
effect RandomFloat : float }->\mathrm{ float
```

- And then treat them specially in the compiler, e.g., in EfF
(* eff/src/backends/runtime/eval.ml *)
let rec top_handle op $=$
match op with
Value $\mathrm{v} \rightarrow \mathrm{v}$
Call (RandomInt, v, k) \rightarrow
top_handle (k (Const.of_integer (Random.int (Value.to_int v))))
| ...

External resources in PL

- Declare a signature of monads or algebraic effects, e.g.,

```
(* System.IO *)
type IO a
openFile :: FilePath }->\mathrm{ IOMode }->\mathrm{ IO Handle
(* pervasives.eff *)
effect RandomInt : int }->\mathrm{ int
effect RandomFloat : float }->\mathrm{ float
```

- And then treat them specially in the compiler, e.g., in EfF
(* eff/src/backends/runtime/eval.ml *)
let rec top_handle op $=$
match op with
| Value $\mathrm{v} \rightarrow \mathrm{v}$
Call (RandomInt, v, k) \rightarrow
top_handle (k (Const.of_integer (Random.int (Value.to_int v))))
| ...
but there are some issues with that approach ...

First issue

- Difficult to cover all possible use cases
- external resources hard-coded into the top-level runtime
- non-trivial to change what's available and how it's implemented

First issue

- Difficult to cover all possible use cases
- external resources hard-coded into the top-level runtime
- non-trivial to change what's available and how it's implemented

Ohad 듭 8:35 PM
So here's the hack I added We should do something a bit more principled
In pervasives.eff:

```
effect Write : (string*string) -> unit
```

in eval.ml, under let rec top_handle op = add the case:

```
| "Write" ->
    (match v with
    | V.Tuple vs ->
        let (file_name :: str :: _) = List.map V.to_str vs in
        let file_handle = open_out_gen
                            [Open_wronly
                            ;Open_append
                            ;Open_creat
                            ;Open_text
                            ] 00666 file_name in
        Printf.fprintf file_handle "%s" str;
        close_out file_handle;
        top_handle (k V.unit_value)
    )
```


First issue

- Difficult to cover all possible use cases
- external resources hard-coded into the top-level runtime
- non-trivial to change what's available and how it's implemented

Ohad 8:35 PM
So here's the hack I added We should do something a bit more principled
In pervasives.eff:

```
effect Write : (string*string) -> unit
```

in eval.ml, under let rec top_handle op = add the case:

```
| "Write" ->
    (match v with
    | V.Tuple vs ->
        let (file_name :: str :: _) = List.map V.to_str vs in
        let file_handle = open_out_gen
            [Open_wronly
            ;Open_append
                            ;Open_creat
                            ;Open_text
                            ] 0o666 file_name in
        Printf.fprintf file_handle "%s" str;
        close_out file_handle;
        top_handle (k V.unit_value)
    )
```

This work - a principled modular (co)algebraic approach!

Second issue

- Lack of linearity for external resources

```
let f(s:string) =
    let fh = fopen "foo.txt" in
    fwrite (fh,s^s);
    fclose fh;
    return fh
```

let $\mathrm{g} \mathrm{s}=$
let $\mathrm{fh}=\mathrm{f} \mathrm{s}$ in fread $\mathrm{fh} \quad\left(*\right.$ fh not open any more! $\left.{ }^{*}\right)$

Second issue

- Lack of linearity for external resources

```
let f(s:string) =
    let fh = fopen "foo.txt" in
    fwrite (fh,s^s);
    fclose fh;
    return fh
let gs=
```

 let \(\mathrm{fh}=\mathrm{f} \mathrm{s}\) in fread \(\mathrm{fh} \quad\left(*\right.\) fh not open any more! \(\left.{ }^{*}\right)\)
 - We shall address these kinds of issues indirectly (!),
- by not introducing a linear typing discipline
- but instead we make it convenient to hide external resources (addressing stronger typing disciplines in the future)

Third issue

- Excessive generality of effect handlers

```
let f(s:string)=
    let fh = fopen "foo.txt" in
    fwrite (fh,s^s);
    fclose fh
```

let $\mathrm{h}=$ handler $\{$ fwrite (fh,s) $\mathrm{k} \rightarrow$ return () $\}$

Third issue

- Excessive generality of effect handlers

```
let f(s:string)=
    let fh = fopen "foo.txt" in
    fwrite (fh,s^s);
    fclose fh
```

let $\mathrm{h}=$ handler $\{$ fwrite (fh,s) $\mathrm{k} \rightarrow$ return () \}

- But misuse of external resources can also be purely accidental let nd_handler = handler $\{$ choose () $k \rightarrow$ return (k true +k false) $\}$
let $g(s 1$ s2:string $)=$
let $\mathrm{fh}=$ fopen "foo.txt" in
let $\mathrm{b}=$ choose () in
if b then (fwrite (fh,s1^s2)) else (fwrite (fh,s2^s1));
fclose fh

Third issue

- Excessive generality of effect handlers

```
let f(s:string) =
    let fh = fopen "foo.txt" in
    fwrite (fh,s^s);
    fclose fh
```

let $h=$ handler $\{$ fwrite $(f h, s) k \rightarrow \operatorname{return}()\}$

- We shall address these kinds of issues directly (!!),
- by proposing a restricted form of handlers for resources
- that support controlled initialisation and finalisation,
- (and limit how general handlers can be used)

Runners

A natural model of top-level runtime

A natural model of top-level runtime

- Given a signature ${ }^{1} \Sigma$ of operation symbols $\left(A_{\mathrm{op}}, B_{\mathrm{op}}\right.$ are sets $)$

$$
\mathrm{op}: A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}
$$

a runner ${ }^{2} \mathcal{R}$ for Σ is given by a carrier $|\mathcal{R}|$ and co-operations

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \times|\mathcal{R}| \longrightarrow B_{\mathrm{op}} \times|\mathcal{R}|\right)_{\mathrm{op} \in \Sigma}
$$

where we think of $|\mathcal{R}|$ as a set of runtime configurations
${ }^{1}$ We consider runners for signatures, but the work generalises to alg. theories. ${ }^{2}$ In the literature also known as comodels for Σ (or for an algebraic theory).

A natural model of top-level runtime

- Given a signature ${ }^{1} \Sigma$ of operation symbols ($A_{\text {op }}, B_{\text {op }}$ are sets)

$$
\mathrm{op}: A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}
$$

a runner ${ }^{2} \mathcal{R}$ for Σ is given by a carrier $|\mathcal{R}|$ and co-operations

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \times|\mathcal{R}| \longrightarrow B_{\mathrm{op}} \times|\mathcal{R}|\right)_{\mathrm{op} \in \Sigma}
$$

where we think of $|\mathcal{R}|$ as a set of runtime configurations

- For example, a natural runner \mathcal{R} for S-valued state signature

$$
\{\text { get }: \mathbb{1} \rightsquigarrow S, \quad \text { set }: S \rightsquigarrow \mathbb{1}\}
$$

is given by

$$
|\mathcal{R}| \stackrel{\text { def }}{=} S \quad \overline{\operatorname{get}}_{\mathcal{R}}(\star, s) \stackrel{\text { def }}{=}(s, s) \quad \overline{\operatorname{set}}_{\mathcal{R}}\left(s^{\prime}, s\right) \stackrel{\text { def }}{=}\left(\star, s^{\prime}\right)
$$

${ }^{1}$ We consider runners for signatures, but the work generalises to alg. theories. ${ }^{2}$ In the literature also known as comodels for Σ (or for an algebraic theory).

A natural model of top-level runtime ctd.

- Runners/comodels have been used for
- operational semantics using tensors of models and comodels [Plotkin and Power '08]
- top-level implementation of algebraic effects in EFF
[Bauer and Pretnar '15]
and
- stateful running of algebraic effects
- linear-use state-passing translation
[Møgelberg and Staton '11, '14]

A natural model of top-level runtime ctd.

- Runners/comodels have been used for
- operational semantics using tensors of models and comodels [Plotkin and Power '08]
- top-level implementation of algebraic effects in EFF
[Bauer and Pretnar '15]
and
- stateful running of algebraic effects
- linear-use state-passing translation
[Møgelberg and Staton '11, '14]
- The latter explicitly rely on one-to-one correspondence between
- runners \mathcal{R}
- monad morphisms ${ }^{3} r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{S t}_{|\mathcal{R}|}$
${ }^{3} \mathrm{Free}_{\Sigma}(X)$ is the free monad ind. defined with leaves val x and nodes op (a, κ).

A natural model of top-level runtime ctd.

- So, runners \mathcal{R} are a natural model of top-level runtime

A natural model of top-level runtime ctd.

- So, runners \mathcal{R} are a natural model of top-level runtime
- But what if this runtime is not $* *$ the ${ }^{* *}$ runtime?
- hardware vs OSs
- OSs vs VMs
- VMs vs sandboxes
but also
- browsers vs web pages

A natural model of top-level runtime ctd.

- So, runners \mathcal{R} are a natural model of top-level runtime
- But what if this runtime is not $* *$ the ${ }^{* *}$ runtime?
- hardware vs OSs
- OSs vs VMs
- VMs vs sandboxes
but also
- browsers vs web pages
- ...
- Unfortunately, runners, as defined above, are not readily able to
- use external resources
- signal failure caused by unavoidable circumstances
- But is there a useful generalisation that would achieve this?

Effectful runners for modular top-levels

Effectful runners for modular top-levels

- Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of generic effects for $\mathbf{S t}_{|\mathcal{R}|}$, i.e.,

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{S t}_{|\mathcal{R}|} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

Effectful runners for modular top-levels

- Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of generic effects for $\mathbf{S t}_{|\mathcal{R}|}$, i.e.,

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{S t}_{|\mathcal{R}|} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

- Building on this, we define a T-runner \mathcal{R} for Σ to be given by

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{T} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

Effectful runners for modular top-levels

- Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of generic effects for $\mathbf{S t}_{|\mathcal{R}|}$, i.e.,

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{S t}_{|\mathcal{R}|} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

- Building on this, we define a T-runner \mathcal{R} for Σ to be given by

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{T} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

- The one-to-one correspondence with monad morphisms

$$
r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}
$$

simply amounts to the universal property of free models, i.e.,

$$
\mathrm{r}_{X}(\operatorname{val} x)=\eta_{X} x \quad \mathrm{r}_{X}(\mathrm{op}(a, \kappa))=\underbrace{\left(\mathrm{r}_{X} \circ \kappa\right)^{\dagger}\left(\overline{\mathrm{op}}_{\mathcal{R}} a\right)}_{\mathrm{op}_{\mathcal{M}}\left(a, \mathrm{r}_{X} \circ \kappa\right)}
$$

Effectful runners for modular top-levels

- Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of generic effects for $\mathbf{S t}_{|\mathcal{R}|}$, i.e.,

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{S t}_{|\mathcal{R}|} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

- Building on this, we define a T-runner \mathcal{R} for Σ to be given by

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{T} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

- The one-to-one correspondence with monad morphisms

$$
r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}
$$

simply amounts to the universal property of free models, i.e.,

$$
\mathrm{r}_{X}(\operatorname{val} x)=\eta_{X} x \quad \mathrm{r}_{X}(\mathrm{op}(a, \kappa))=\underbrace{\left(\mathrm{r}_{X} \circ \kappa\right)^{\dagger}\left(\overline{o p}_{\mathcal{R}} a\right)}_{\text {op }_{\mathcal{M}}\left(a, r_{X} \circ \kappa\right)}
$$

- Observe that κ appears in a tail call position on the right!

Effectful runners for modular top-levels ctd.

- What would be a useful class of monads \mathbf{T} to use?

Effectful runners for modular top-levels ctd.

- What would be a useful class of monads \mathbf{T} to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
(i) provide management of (internal) resources
(ii) use further external resources
(iii) signal failure caused by unavoidable circumstances

Effectful runners for modular top-levels ctd.

- What would be a useful class of monads \mathbf{T} to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
(i) provide management of (internal) resources
(ii) use further external resources
(iii) signal failure caused by unavoidable circumstances
- Algebraically (and pragmatically), this amounts to taking
(i) getenv: $\mathbb{1} \rightsquigarrow C \quad \& \quad$ setenv: $C \rightsquigarrow \mathbb{1}$
(ii) $\mathrm{op}: A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}$
(op $\in \Sigma^{\prime}$, for some external Σ^{\prime})
(iii) kill : $S \rightsquigarrow \mathbb{O}$
s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

Effectful runners for modular top-levels ctd.

- What would be a useful class of monads \mathbf{T} to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
(i) provide management of (internal) resources
(ii) use further external resources
(iii) signal failure caused by unavoidable circumstances
- Algebraically (and pragmatically), this amounts to taking
(i) getenv: $\mathbb{1} \rightsquigarrow C \quad \& \quad$ setenv: $C \rightsquigarrow \mathbb{1}$
(ii) op: $A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}$
(op $\in \Sigma^{\prime}$, for some external Σ^{\prime})
(iii) kill : $S \rightsquigarrow 0$
s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)
- The induced monad is then isomorphic to

$$
\mathbf{T} X \quad \stackrel{\text { def }}{=} \quad C \Rightarrow \boldsymbol{F r e e}_{\Sigma^{\prime}}((X \times C)+S)
$$

Effectful runners for modular top-levels ctd.

- The corresponding T-runners \mathcal{R} for Σ are then of the form

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow C \Rightarrow \text { Free }_{\Sigma^{\prime}}\left(\left(B_{\mathrm{op}} \times C\right)+S\right)\right)_{\mathrm{op} \in \Sigma}
$$

Effectful runners for modular top-levels ctd.

- The corresponding T-runners \mathcal{R} for Σ are then of the form

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow C \Rightarrow \operatorname{Free}_{\Sigma^{\prime}}\left(\left(B_{\mathrm{op}} \times C\right)+S\right)\right)_{\mathrm{op} \in \Sigma}
$$

- Observe that raising signals in S discards the state, but not all problems are terminal-they can be recovered from

Effectful runners for modular top-levels ctd.

- The corresponding T-runners \mathcal{R} for Σ are then of the form

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow C \Rightarrow \operatorname{Free}_{\Sigma^{\prime}}\left(\left(B_{\mathrm{op}} \times C\right)+S\right)\right)_{\mathrm{op} \in \Sigma}
$$

- Observe that raising signals in S discards the state, but not all problems are terminal-they can be recovered from
- Our solution: consider signatures Σ with operation symbols

$$
\mathrm{op}: A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}+E_{\mathrm{op}}
$$

Effectful runners for modular top-levels ctd.

- The corresponding T-runners \mathcal{R} for Σ are then of the form

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow C \Rightarrow \operatorname{Free}_{\Sigma^{\prime}}\left(\left(B_{\mathrm{op}} \times C\right)+S\right)\right)_{\mathrm{op} \in \Sigma}
$$

- Observe that raising signals in S discards the state, but not all problems are terminal-they can be recovered from
- Our solution: consider signatures Σ with operation symbols

$$
\text { op : } A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}+E_{\mathrm{op}} \quad \text { (which we write as op : } A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}!E_{\mathrm{op}} \text {) }
$$

Effectful runners for modular top-levels ctd.

- The corresponding T-runners \mathcal{R} for Σ are then of the form

$$
\left(\overline{\mathrm{o}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow C \Rightarrow \operatorname{Free}_{\Sigma^{\prime}}\left(\left(B_{\mathrm{op}} \times C\right)+S\right)\right)_{\mathrm{op} \in \Sigma}
$$

- Observe that raising signals in S discards the state, but not all problems are terminal-they can be recovered from
- Our solution: consider signatures Σ with operation symbols

$$
\text { op : } A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}+E_{\mathrm{op}} \quad \text { (which we write as op : } A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}!E_{\mathrm{op}} \text {) }
$$

- With this, our T-runners \mathcal{R} for Σ are (with "primitive" excs.)

$$
\left(\overline{\mathrm{o}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{K}_{C}^{\Sigma^{\prime \prime}: E_{\mathrm{op}} \leqslant S} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

where we call $\mathbf{K}_{C}^{\Sigma!E_{4} S}$ a kernel monad (the sum of \mathbf{T} and excs.)

$$
\mathbf{K}_{C}^{\Sigma^{\prime}!E_{\mathrm{op} \&} \delta S} B_{\mathrm{op}} \stackrel{\text { def }}{=} C \Rightarrow \text { Free }_{\Sigma^{\prime}}\left(\left(\left(B_{\mathrm{op}}+E_{\mathrm{op}}\right) \times C\right)+S\right)
$$

T-runners as a programming construct

 (towards a core calculus for runners)
T-runners as a programming construct

- First, we include T-runners for Σ

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{K}_{C}^{\Sigma^{\prime}!E_{\mathrm{op}} \& S} B_{\mathrm{op}}\right)_{\mathrm{op} \in \Sigma}
$$

in our language as values, and co-ops. as kernel code, i.e., let $R=$ runner $\left\{\mathrm{op}_{1} \mathrm{x}_{1} \rightarrow \mathrm{~K}_{1}, \ldots, \mathrm{op}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{K}_{\mathrm{n}}\right\} @ C$

T-runners as a programming construct

- First, we include T-runners for Σ

$$
\left(\overline{\mathrm{op}}_{\mathcal{R}}: A_{\mathrm{op}} \longrightarrow \mathbf{K}_{C}^{\Sigma} \sum_{\mathrm{op} 乡 S}^{\Sigma_{\mathrm{op}}}\right)_{\mathrm{op} \in \Sigma}
$$

in our language as values, and co-ops. as kernel code, i.e., let $R=$ runner $\left\{\mathrm{op}_{1} \mathrm{x}_{1} \rightarrow \mathrm{~K}_{1}, \ldots, \mathrm{op}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{K}_{\mathrm{n}}\right\} @ C$

- For instance, we can implement a write-only file handle as

```
let R RH}= runner {\
    write s}->\mathrm{ if (length s > maxSize)
    then (raise WriteSizeExceeded)
    else (let fh = getenv () in
    if (isValid fh) then (fwrite (fh,s)) else (kill IOError))
```

\} @ FileHandle
where

$$
\Sigma \stackrel{\text { def }}{=}\{\text { write : String } \rightsquigarrow 1!E \cup\{\text { WriteSizeExceeded }\}\}
$$

$($ fwrite : FileHandle \times String $\rightsquigarrow 1!E) \in \Sigma^{\prime} \quad S=\{$ IOError $\}$

Controlled initialisation and finalisation

Controlled initialisation and finalisation

- Recall that the components r_{X} of the monad morphism

$$
r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}
$$

induced by a T-runner \mathcal{R} are all tail-recursive

Controlled initialisation and finalisation

- Recall that the components r_{X} of the monad morphism

```
initialisation
```

$r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$
induced by a T-runner \mathcal{R} are all tail-recursive

- We make use of it to enable programmers to run user code:
using R @ $M_{\text {init }}$
run M
finally $\left\{\right.$ return x @ $c \rightarrow M_{\text {ret }}, \ldots$ raise e@c $\rightarrow M_{e} \ldots, \ldots$ kill $\left.s \rightarrow M_{s} \ldots\right\}$
where
(a user monad)
- Ms are user code, modelled using $\mathbf{U}^{\Sigma!E} X \stackrel{\text { def }}{=} \operatorname{Free}_{\Sigma}(X+E)$

Controlled initialisation and finalisation

- Recall that the components r_{X} of the monad morphism

```
initialisation
```

$r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$
induced by a T-runner \mathcal{R} are all tail-recursive

- We make use of it to enable programmers to run user code:
using R @ $M_{\text {init }}$
run M
finally $\left\{\right.$ return x @ $c \rightarrow M_{\text {ret }}, \ldots$ raise e @ $c \rightarrow M_{e} \ldots, \ldots$ kill $\left.s \rightarrow M_{s} \ldots\right\}$
where
(a user monad)
- Ms are user code, modelled using $\mathbf{U}^{\Sigma!E} X \stackrel{\text { def }}{=} \operatorname{Free}_{\Sigma}(X+E)$
- $M_{\text {init }}$ produces the initial kernel state
- M is the user code being run using the runner R
- $M_{r e t}, M_{e}, M_{s}$ finalise for return values, exceptions, and signals

Controlled initialisation and finalisation

- Recall that the components r_{X} of the monad morphism

$$
r: \operatorname{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}
$$

induced by a \mathbf{T}-runner \mathcal{R} are all tail-recursive

- We make use of it to enable programmers to run user code:

> using R @ M Mint
run M
finally $\left\{\right.$ return \times @ $c \rightarrow M_{\text {ret }}, \ldots$ raise e © $c \rightarrow M_{e} \ldots, \ldots$ kill $\left.s \rightarrow M_{s} \ldots\right\}$
where
(a user monad)

- Ms are user code, modelled using $\mathbf{U}^{\Sigma!E} X \stackrel{\text { def }}{=} \operatorname{Free}_{\Sigma}(X+E)$
- $M_{\text {init }}$ produces the initial kernel state
- M is the user code being run using the runner R
- $M_{r e t}, M_{e}, M_{s}$ finalise for return values, exceptions, and signals
- $M_{\text {ret }}$ and M_{e} depend on the final state c, but M_{s} does not

Controlled initialisation and finalisation ctd.

- For instance, we can define a PYthon-esque with construct with fileName do M
$=$
using R_{FH} @ (fopen fileName)
run M
finally \{
return \times @ fh \rightarrow fclose fh; return \times,
raise WriteSizeExceeded @ fh \rightarrow fclose fh; return (),
raise e @ fh \rightarrow fclose fh; raise e, (* other exceptions in E are re-raised $*$)
kill IOError $\rightarrow \ldots\}$

Controlled initialisation and finalisation ctd.

- For instance, we can define a PYthon-esque with construct with fileName do M
=
using R_{FH} @ (fopen fileName)
run M
finally \{
return \times @ fh \rightarrow fclose fh; return \times, raise WriteSizeExceeded @ fh \rightarrow fclose fh; return (), raise e @ fh \rightarrow fclose fh; raise e, (* other exceptions in E are re-raised $*$) kill IOError $\rightarrow \ldots\}$
- the file handle is hidden from M
- M can only call write : String $\rightsquigarrow 1!E \cup\{$ WriteSizeExceeded $\}$ but not (the external operations) fopen, fclose, and fwrite
- fopen and fclose are limited to initialisation-finalisation
- M can itself also catch WriteSizeExceeded to re-try writing

A core calculus for

 programming with runners
Core calculus (syntax)

Core calculus (syntax)

- Ground types (types of operations and kernel state)

$$
A, B, C::=B|1| 0|A \times B| A+B
$$

- Types

$$
\begin{aligned}
X, Y::= & B|1| 0|X \times Y| X+Y \\
\mid & X \xrightarrow{\Sigma} Y!E \\
& X \underset{\longrightarrow}{\Sigma} Y!E 乡 S @ C \\
& \Sigma \Rightarrow \Sigma^{\prime} 乡 S @ C
\end{aligned}
$$

- Values

$$
\Gamma \vdash v: x
$$

- User computations

$$
\Gamma \Sigma M: X!E
$$

- Kernel computations

$$
\Gamma \vDash K: X!E z S @ C
$$

Core calculus (user computations)

```
M,N ::= return V
    try M with {return x}\mapstoN,(\mathrm{ raise e}\mapsto\mp@subsup{N}{e}{}\mp@subsup{)}{e\inE}{}
    VW
    match V with {\langle<x,y\rangle\mapstoM}
    match }V\mathrm{ with {}
    match V with {inl }x\mapstoM,\operatorname{inr}y\mapstoN
    op}\mp@subsup{X}{X}{}(V,(x.M),(N N ) e\inE\mathrm{ op 
    \mp@subsup{raise}{X}{}e
    using V@ W run M finally {
        return x@c\mapstoN,
        (raise e@c\mapstoN N ) e\inE ,
        (kill s\mapsto N
    kernel K@ V finally {
    return x@c\mapstoN,
    (raise e@c\mapsto N N ) e\inE ,
    (kill s}\mapsto>\mp@subsup{N}{s}{}\mp@subsup{)}{s\inS}{}
```

value
exception handler application
product elimination
empty elimination
sum elimination
operation call raise exception run
switch to kernel mode

Core calculus (kernel computations)

```
\(K, L::=\) return \(_{C} V\)
try \(K\) with \(\left\{\right.\) return \(\left.x \mapsto L,\left(\text { raise } e \mapsto L_{e}\right)_{e \in E}\right\}\)
V W
match \(V\) with \(\{\langle x, y\rangle \mapsto K\}\)
match \(V\) with \(\left\}_{X @ C}\right.\)
match \(V\) with \(\{\) inl \(x \mapsto K\), inr \(y \mapsto L\}\)
\(\mathrm{op}_{X @ C}\left(V,(x . K),\left(L_{e}\right)_{e \in E_{\mathrm{op}}}\right)\)
raise \({ }_{X @ C} e\)
kill \(_{X @ C} s\)
getenv \({ }_{C}(c . K)\)
setenv \((V, K)\)
user \(M\) with \(\left\{\right.\) return \(\left.x \mapsto K,\left(\text { raise } e \mapsto L_{e}\right)_{e \in E}\right\}\)
```

value
exception handler application product elimination empty elimination sum elimination operation call raise exception
send signal
get state
set state
switch to user mode

Core calculus (type system and eq. theory)

Core calculus (type system and eq. theory)

- For example, the typing rule for running user comps. is

$$
\begin{aligned}
& \Gamma \vdash V: \Sigma \Rightarrow \Sigma^{\prime} \& S \text { @ } C \quad \Gamma \vdash W: C \\
& \Gamma \Sigma^{\Sigma} M: X!E \quad \Gamma, x: X, c: C \Sigma^{\prime} N_{\text {ret }}: Y!E^{\prime} \\
& \left(\Gamma, c: C \Sigma^{\prime} N_{e}: Y!E^{\prime}\right)_{e \in E} \quad\left(\Gamma \Sigma^{\prime} N_{s}: Y!E^{\prime}\right)_{s \in S} \\
& \Gamma \Sigma^{\prime} \text { using } V @ W \text { run } M \text { finally }\left\{\text { return } x @ c \mapsto N_{\text {ret }}\right. \text {, } \\
& \text { (raise e@cけNe) } N_{e \in E} \text {, } \\
& \left.\left(\text { kill } s \mapsto N_{s}\right)_{s \in S}\right\}: Y!E^{\prime}
\end{aligned}
$$

Core calculus (type system and eq. theory)

- For example, the typing rule for running user comps. is

$$
\begin{gathered}
\Gamma \vdash V: \Sigma \Rightarrow \Sigma^{\prime} \& S @ C \quad\ulcorner\vdash W: C \\
\Gamma \Sigma M: X!E \quad\left\ulcorner, x: X, C: C \Sigma^{\prime}{ }_{\text {ret }}: Y!E^{\prime}\right. \\
\left(\Gamma, c: C \Sigma^{\prime} N_{e}: Y!E^{\prime}\right)_{e \in E} \quad\left(\Gamma \Sigma^{\prime} N_{s}: Y!E^{\prime}\right)_{s \in S}
\end{gathered}
$$

$\Gamma{ }^{\Sigma^{\prime}}$ using $V @ W$ run M finally $\left\{\right.$ return $x @ c \mapsto N_{\text {ret }}$,

$$
\begin{aligned}
& \left(\text { raise } e @ c \mapsto N_{e}\right)_{e \in E}, \\
& \left.\left(\text { kill } s \mapsto N_{s}\right)_{s \in S}\right\}: Y!E^{\prime}
\end{aligned}
$$

- and the main β-equation for running user comps. is
$\Gamma \mathbb{F}^{\prime}$ using $R @ W$ run (op $p_{X}\left(V,(y . M),\left(M_{e}\right)_{e \in E_{\mathrm{op}}}\right)$ finally F \equiv kernel $K_{o p}\left[V / x_{o p}\right]$ @ W finally $\{$
return $y @ c^{\prime} \mapsto$ using $R @ c^{\prime}$ run M finally F, (raise $e @ c^{\prime} \mapsto$ using $R @ c^{\prime}$ run M_{e} finally $\left.F\right)_{e \in E_{o p}}$, $\left.\left(\text { kill } s \mapsto N_{s}\right)_{s \in S}\right\}: Y!E^{\prime}$

Core calculus (type system and eq. theory)

- The calculus also includes subtyping, and subsumption rules

$$
\frac{\Gamma \vdash V: A \quad A<: B}{\Gamma \vdash V: B}
$$

$$
\frac{\Gamma \Sigma M: A!E \quad \Sigma \subseteq \Sigma^{\prime} \quad A<: B \quad E \subseteq E^{\prime}}{\Gamma \Sigma^{\prime} M: B!E^{\prime}}
$$

$$
\begin{gathered}
\Gamma \Sigma K: A!E \& S @ C \quad \Sigma \subseteq \Sigma^{\prime} \\
A<: B \quad E \subseteq E^{\prime} \quad S \subseteq S^{\prime} \quad C=C^{\prime} \\
\Gamma \Sigma^{\prime} K: B!E^{\prime} \& S^{\prime} @ C^{\prime}
\end{gathered}
$$

Core calculus (type system and eq. theory)

- The calculus also includes subtyping, and subsumption rules

$$
\frac{\Gamma \vdash V: A \quad A<: B}{\Gamma \vdash V: B}
$$

$$
\frac{\Gamma \Sigma M: A!E \quad \Sigma \subseteq \Sigma^{\prime} \quad A<: B \quad E \subseteq E^{\prime}}{\Gamma \Sigma^{\prime} M: B!E^{\prime}}
$$

$$
\begin{gathered}
\Gamma \Sigma K: A!E \& S @ C \quad \Sigma \subseteq \Sigma^{\prime} \\
A<: B \quad E \subseteq E^{\prime} \quad S \subseteq S^{\prime} \quad C=C^{\prime} \\
\Gamma \Sigma^{\prime} K: B!E^{\prime} \& S^{\prime} @ C^{\prime}
\end{gathered}
$$

- We use $C=C^{\prime}$ to have (standard) proof-irrelevant subtyping
- Otherwise, instead of just $C<: C^{\prime}$, we would need a lens $C^{\prime} \leftrightarrow C$

Core calculus (semantics)

Core calculus (semantics)

- Monadic semantics, for concreteness in Set, using
- user monads $\mathbf{U}^{\Sigma!E} X \xlongequal{=} \operatorname{Free}_{\Sigma}(X+E)$
- kernel monads $\mathbf{K}_{C}^{\Sigma!E_{\zeta} S} X \stackrel{\text { def }}{=} C \Rightarrow \operatorname{Free}_{\Sigma}(((X+E) \times C)+S)$

Core calculus (semantics)

- Monadic semantics, for concreteness in Set, using
- user monads $\mathbf{U}^{\Sigma!E} X \xlongequal{\text { def }} \operatorname{Free}_{\Sigma}(X+E)$
- kernel monads $\mathbf{K}_{C}^{\sum!E^{\ell} S} X \xlongequal{\text { def }} C \Rightarrow \operatorname{Free}_{\Sigma}(((X+E) \times C)+S)$
- (At a high level) the judgements are interpreted as

$$
\begin{gathered}
\llbracket \Gamma \vdash V: X \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket X \rrbracket \\
\llbracket \Gamma \Sigma M: X!E \rrbracket: \llbracket\left\ulcorner\rrbracket \longrightarrow \mathbf{U}^{\Sigma!E} \llbracket X \rrbracket\right. \\
\llbracket \Gamma \lessgtr K: X!E \& S @ C \rrbracket: \llbracket \Gamma \rrbracket \longrightarrow \mathbf{K}_{\llbracket \subset \rrbracket}^{\Sigma!E S S} \llbracket X \rrbracket
\end{gathered}
$$

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!), we actually give the semantics in the subset fibration

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!), we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma 「 K: X!E \& S @ C \rrbracket} \mathbf{K}_{\llbracket \subset \rrbracket}^{\Sigma!E \hbar S} \llbracket X \rrbracket \\
& \subseteq \downarrow \subseteq
\end{aligned}
$$

where $\Gamma^{s} \vdash K: X^{s} @ C$ is a skeletal kernel typing judgement

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!), we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma^{\Sigma} K: X!E\{S @ C \rrbracket} \mathbf{K}_{\llbracket C \rrbracket}^{\Sigma!E_{j} s} \llbracket X \rrbracket \\
& \subseteq \downarrow \subseteq
\end{aligned}
$$

where $\Gamma^{s} \vdash K: X^{s} @ C$ is a skeletal kernel typing judgement

- No essential obstacles to extending to $\mathbf{S u b}(\mathbf{C p o})$ and beyond

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!), we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

$$
\begin{aligned}
& \subseteq \downarrow \text { ๓ }
\end{aligned}
$$

where $\Gamma^{s} \vdash K: X^{s} @ C$ is a skeletal kernel typing judgement

- No essential obstacles to extending to $\operatorname{Sub}(\mathbf{C p o})$ and beyond
- Ground type restriction on C needed to stay within $\operatorname{Sub}(\ldots)$
- Otherwise, analogously to subtyping, we'd need lenses instead

Implementing runners

Experimenting with the theory in practice

Experimenting with the theory in practice

- A small experimental language Coop^{4}
- Implements the core calculus with few extras
- The interpreter is directly based on the denotational semantics
- Top-level containers for running external (OCaml) code

Experimenting with the theory in practice

- A small experimental language CoOp^{4}
- Implements the core calculus with few extras
- The interpreter is directly based on the denotational semantics
- Top-level containers for running external (OCaml) code
- A Haskell library Haskell-Coop
- A shallow-embedding of the core calculus in Haskell
- Uses one of the Freer monad implementations underneath
- Again, the operational aspects implement the denot. semantics
- Top-level containers for arbitrary Haskell monads
- Examples make use of Haskell's features (GADTs, ...)

Experimenting with the theory in practice

- A small experimental language CoOp^{4}
- Implements the core calculus with few extras
- The interpreter is directly based on the denotational semantics
- Top-level containers for running external (OCaml) code
- A Haskell library Haskell-Coop
- A shallow-embedding of the core calculus in Haskell
- Uses one of the Freer monad implementations underneath
- Again, the operational aspects implement the denot. semantics
- Top-level containers for arbitrary Haskell monads
- Examples make use of Haskell's features (GADTs, ...)
- Both still need some finishing touches, but will be public soon

Runners in action

Runners can be vertically nested

Runners can be vertically nested

- using R_{FH} @ (fopen fileName)
run (
using R_{FC} @ (return "")
run M
finally \{
return \times @ str \rightarrow write str; return \times,
raise WriteSizeExceeded @ str \rightarrow write str; raise WriteSizeExceeded $\}$
)
finally \{
return $\times @$ fh $\rightarrow \ldots$, raise e@fh $\rightarrow \ldots$, kill IOError $\rightarrow \ldots\}$
where the file contents runner (with $\Sigma^{\prime}=\{ \}$) is defined as
let $\mathrm{R}_{\mathrm{FC}}=$ runner $\{$
write str' \rightarrow let str $=$ getenv () in

$$
\begin{aligned}
& \text { if }\left(\text { length }\left(\operatorname{str}^{\wedge} \operatorname{str}^{\prime}\right)>\max \right) \text { then (raise WriteSizeExceeded) } \\
& \text { else (setenv (str^str')) }
\end{aligned}
$$

\} @ String

Vertical nesting for instrumentation

Vertical nesting for instrumentation

- using $\mathrm{R}_{\text {Sniffer }}$ @ (return 0)
run M
finally \{
return x © c \rightarrow
let fh = fopen "nsa.txt" in fwrite (fh,toStr c); fclose fh; return \times \}
where the instrumenting runner is defined as

$$
\begin{aligned}
& \text { let } R_{\text {Sniffer }}=\text { runner }\{ \\
& \\
& \ldots, \text { let } \mathrm{c}=\text { getenv }() \text { in } \\
& \quad \text { setenv }(c+1) ; \\
& \quad \text { op a },
\end{aligned} \quad(* \text { forwards op outwards } *)
$$

- The runner $R_{\text {Sniffer }}$ implements the same sig. Σ that M is using
- As a result, the runner $R_{\text {Sniffer }}$ is invisible from M 's viewpoint

Vertical nesting for active monitoring

Vertical nesting for active monitoring

- First, we define a runner for integer-valued ML-style state as

```
type IntHeap = (Nat }->(\operatorname{lnt}+1))\timesNa
                                    type Ref = Nat
let R RIntState }=\mathrm{ runner {
    alloc x let h = getenv() in
                (* alloc:Int }\rightsquigarrow\operatorname{Ref!{}*)
                                    let (r,h') = heapAlloc h x in
                                    setenv h';
                                    return r,
deref r let h = getenv() in
                                    (* deref:Ref }\rightsquigarrow\operatorname{Int}!{}*
                                    match (heapSel h r) with
                                    | inl x return x
                                inr () }->\mathrm{ kill ReferenceDoesNotExist ,
    assign ry let h=getenv () in (* assign:Ref }\times\operatorname{lnt}\rightsquigarrow1!{}*
        match (heapUpd h ry) with
        |inl h' }->\mathrm{ setenv h'
        | inr () }->\mathrm{ kill ReferenceDoesNotExist
} @ IntHeap
```


Vertical nesting for active monitoring ctd.

- Next we define a runner for monotonicity layer on top of $\mathrm{R}_{\text {IntState }}$

Vertical nesting for active monitoring ctd.

- Next we define a runner for monotonicity layer on top of $\mathrm{R}_{\text {IntState }}$

```
type MonMemory = Ref }->((\operatorname{Int}->\textrm{Int}->\mathrm{ Bool ) + 1)
let }\mp@subsup{R}{\mathrm{ MonState }}{= runner {
    mAlloc x rel l let r = alloc x in (*:Int x Ord }\rightsquigarrow\operatorname{Ref!{}*)
        let m = getenv () in
        setenv (memAdd m r rel);
        return r,
    mDeref r m deref r,
                                    (* monDeref: Ref }\rightsquigarrow\operatorname{Int}!{}*
    mAssign ry let x = derefr in (*:Ref x Int w 1!{MV}*)
        let m = getenv () in
        match (memSel m r) with
        | inl rel }->\mathrm{ if (rel x y)
        then (assign r y)
        else (raise MonotonicityViolation)
    inr }->\mathrm{ kill PreorderDoesNotExist
} @ MonMemory
```


Vertical nesting for active monitoring ctd.

- We can then perform runtime monotonicity verification as

Vertical nesting for active monitoring ctd.

- We can then perform runtime monotonicity verification as

```
using R RIntState @ ((fun _ }->\mathrm{ inr ()), 0) (* init. empty ML-style heap *)
run (
```

```
using R}\mp@subsup{\textrm{R}}{\mathrm{ MonState @ (fun _ }->\mathrm{ inr ()) (* init. empty preorders memory *)}}{\mathrm{ ( )}
```

using R}\mp@subsup{\textrm{R}}{\mathrm{ MonState @ (fun _ }->\mathrm{ inr ()) (* init. empty preorders memory *)}}{\mathrm{ ()}
run (
let r=mAlloc 0(}\leqslant\mathrm{) in
mAssign r 1;
mAssign r 0; (* RMonState raises MonotonicityViolation exception *)
mAssign r 2
)
finally { ... , raise MonotonicityViolation @ m -> ... ,..}

```
)
finally \(\{\ldots\}\)

Runners can also be horizontally paired

\section*{Runners can also be horizontally paired}
- Given runners for \(\Sigma\) and \(\Sigma^{\prime}\)
\[
\begin{aligned}
& \text { let } R_{1}=\operatorname{runner}\left\{\ldots, \text { op }_{1 \mathrm{i}} x \rightarrow \mathrm{~K}_{1 \mathrm{i}}, \ldots\right\} @ \mathrm{C}_{1} \\
& \text { let } \mathrm{R}_{2}=\operatorname{runner}\left\{\ldots, \mathrm{op}_{2 j} x \rightarrow \mathrm{~K}_{2 \mathrm{j}}, \ldots\right\} @ \mathrm{C}_{2}, \ldots
\end{aligned}
\]
we can pair them to get a runner for \(\Sigma+\Sigma^{\prime}\)
let \(R=\operatorname{runner}\{\ldots\),
\[
\mathrm{op}_{1 i} \mathrm{x} \rightarrow \text { let }\left(\mathrm{c}, \mathrm{c}^{\prime}\right)=\text { getenv }() \text { in }
\]
            user (kernel ( \(\mathrm{K}_{1 \mathrm{i}} \mathrm{x}\) ) @ c finally \{
                return y @ \(c^{\prime \prime} \rightarrow\) return (inl (inl y, \(\left.c^{\prime \prime}\right)\) ),
                raise e @ \(c^{\prime \prime} \rightarrow\) return (inl (inr e, \(\left.\left.\mathrm{c}^{\prime \prime}\right)\right)\), \(\quad\left(* e \in E_{\mathrm{op}_{\mathrm{pi}}} *\right)\)
                kill \(s \rightarrow\) return (inr s) \(\} \quad\left(* s \in S_{1} *\right)\)
finally \{
return (inl (inl y, \(\left.\mathrm{c}^{\prime \prime}\right)\) ) \(\rightarrow\) setenv ( \(\left.\mathrm{c}^{\prime \prime}, c^{\prime}\right)\); return y , return (inl (inr e, \(\left.c^{\prime \prime}\right)\) ) \(\rightarrow\) setenv ( \(c^{\prime \prime}, c^{\prime}\) ); raise e, return (inrs) \(\rightarrow\) kill s \},
\[
\begin{aligned}
& \mathrm{op}_{2 \mathrm{j}} \times \rightarrow \rightarrow_{\mathrm{C}} \quad(* \text { analogously to above, just on 2nd comp. of state } *) \\
& \ldots\} @ \mathrm{C}_{1} \times \mathrm{C}_{2}
\end{aligned}
\]

\section*{Runners can also be horizontally paired}
- Given runners for \(\Sigma\) and \(\Sigma^{\prime}\)
\[
\begin{aligned}
& \text { let } R_{1}=\operatorname{runner}\left\{\ldots, \text { op }_{1 \mathrm{i}} x \rightarrow \mathrm{~K}_{1 \mathrm{i}}, \ldots\right\} @ \mathrm{C}_{1} \\
& \text { let } \mathrm{R}_{2}=\operatorname{runner}\left\{\ldots, \mathrm{op}_{2 j} x \rightarrow \mathrm{~K}_{2 \mathrm{j}}, \ldots\right\} @ \mathrm{C}_{2}, \ldots
\end{aligned}
\]
we can pair them to get a runner for \(\Sigma+\Sigma^{\prime}\)
let \(R=\operatorname{runner}\{\ldots\),
\[
\mathrm{op}_{1 i} \mathrm{x} \rightarrow \text { let }\left(\mathrm{c}, \mathrm{c}^{\prime}\right)=\text { getenv }() \text { in }
\]
            user (kernel ( \(\mathrm{K}_{1 \mathrm{i}} \mathrm{x}\) ) @ c finally \{
                return y @ \(c^{\prime \prime} \rightarrow\) return (inl (inl y, \(\left.c^{\prime \prime}\right)\) ),
                raise e @ \(c^{\prime \prime} \rightarrow\) return (inl (inr e, \(\left.\left.\mathrm{c}^{\prime \prime}\right)\right)\), \(\quad\left(* e \in E_{\mathrm{op}_{\mathrm{pi}}} *\right)\)
                kill \(s \rightarrow\) return (inr s) \(\} \quad\left(* s \in S_{1} *\right)\)
finally \{
return \(\left(\right.\) inl \(\left(\right.\) inl \(\left.\left.y, c^{\prime \prime}\right)\right) \rightarrow\) setenv \(\left(c^{\prime \prime}, c^{\prime}\right) ;\) return \(y\), return (inl (inr e, \(c^{\prime \prime}\) )) \(\rightarrow\) setenv ( \(c^{\prime \prime}, c^{\prime}\) ); raise e, return (inrs) \(\rightarrow\) kill s \},
\[
\begin{aligned}
& \mathrm{op}_{2 \mathrm{j}} \times \rightarrow \rightarrow_{\mathrm{A}} \quad(* \text { analogously to above, just on 2nd comp. of state } *) \\
& \ldots\} @ \mathrm{C}_{1} \times \mathrm{C}_{2}
\end{aligned}
\]
- For instance, this way we can build a runner for 10 and state

\section*{Other examples (in HASKELL)}

\section*{Other examples (in Haskell)}
- More general forms of (ML-style) state (for general Ref A )
- if the host language allows it, we use GADTs, etc for safety
- some examples extract a footprint from a larger memory
- Combinations of different effects and runners
- in particular the combination of IO and state
- good use case for both vertical and horizontal composition
- KOKA-style ambient values and ambient functions
- ambient values are essentially mutable variables/parameters
- ambient functions are applied in their lexical context
- a runner that treats amb. fun. application as a co-operation
- amb. funs. are stored in a context-depth-sensitive heap
- the appl. co-operation restores the heap to the lexical context

\section*{Other examples (ambient functions)}
```

module Control.Runner.Ambients
ambCoOps :: Amb a -> Kernel sig AmbHeap a
ambCoOps (Bind f) =
do h <- getEnv;
(f,h') <- return (ambHeapAlloc h f);
setEnv h';
return f
ambCoOps (Apply f x) =
do h <- getEnv;
(f,d) <- return (ambHeapSel h f (depth h));
user
(run
ambRunner
(return (h {depth = d}))
(f x)
ambFinaliser)
return
ambCoOps (Rebind f g) =
do h <- getEnv;
setEnv (ambHeapUpd h f g)
ambRunner :: Runner '[Amb] sig AmbHeap
ambRunner = mkRunner ambCoOps

```

\section*{Wrapping up}
- Runners are a natural model of top-level runtime
- We propose T-runners to also model non-top-level runtimes
- We have turned T-runners into a (practical ?) programming construct, that supports controlled initialisation and finalisation
- I showed you some combinators and programming examples
- Two implementations in the works, Coop \& Haskell-Coop
- Ongoing and future: lenses in subtyping and semantics, cat. of runners, handlers, case studies, refinement typing, compilation, ...

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0326.

\section*{Core calculus (semantics ctd.)}
\(\llbracket \Gamma \Vdash^{\prime}\) using \(V @ W\) run \(M\) finally \(\left\{\right.\) return \(x @ c \mapsto N_{\text {ret }}\), (raise \(\left.e @ c \mapsto N_{e}\right)_{e \in E}\),
\(\left.\left(\text { kill } s \mapsto N_{s}\right)_{s \in S}\right\}: Y!E^{\prime} \rrbracket_{\gamma} \stackrel{\text { def }}{=} \ldots\)
- \(\llbracket V \rrbracket_{\gamma}=\mathcal{R}=\left(\overline{\mathrm{op}}_{\mathcal{R}}: \llbracket A_{\mathrm{op}} \rrbracket \longrightarrow \mathbf{K}_{\llbracket C \rrbracket}^{\Sigma^{\prime}!E_{\text {op }} \delta S} \llbracket B_{\mathrm{op}} \rrbracket\right)_{\text {op } \in \Sigma}\)
- \(\llbracket W \rrbracket_{\gamma} \in \llbracket C \rrbracket\)
- \(\llbracket M \rrbracket_{\gamma} \in \mathbf{U}^{\Sigma!E} \llbracket A \rrbracket\)
- \(\llbracket\) return \(\times @ \mathrm{c} \rightarrow N_{\text {ret }} \rrbracket_{\gamma} \in \llbracket A \rrbracket \times \llbracket C \rrbracket \longrightarrow \mathbf{U}^{\Sigma^{\prime}!E^{\prime}} \llbracket B \rrbracket\)
- \(\llbracket\left(\text { raise e @ c } \rightarrow N_{e}\right)_{e \in E} \rrbracket_{\gamma} \in E \times \llbracket C \rrbracket \longrightarrow \mathbf{U}^{\Sigma^{\prime}!E^{\prime}} \llbracket B \rrbracket\)
- \(\llbracket\left(\text { kill } s \rightarrow N_{s}\right)_{s \in S} \rrbracket_{\gamma} \in S \longrightarrow \mathbf{U}^{\Sigma^{\prime}!E^{\prime}} \llbracket B \rrbracket\)
- allowing us to use the free model property to get
\[
\mathbf{U}^{\Sigma!E} \llbracket A \rrbracket \xrightarrow{r_{\llbracket A \rrbracket+E}} \mathbf{K}_{\llbracket C \rrbracket}^{\Sigma{ }^{\prime}!E 乡 S} \llbracket A \rrbracket \xrightarrow{\left(\lambda \llbracket N_{r e t} \rrbracket \rrbracket_{\gamma}\right)^{\ddagger}} \llbracket C \rrbracket \Rightarrow \mathbf{U}^{\Sigma^{\prime}!E^{\prime}} \llbracket B \rrbracket
\]
and then apply the resulting composite to \(\llbracket M \rrbracket_{\gamma}\) and \(\llbracket W \rrbracket_{\gamma}\)```

