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Today’s Plan

‚ Synchrony of algebraic effects

‚ Asynchrony through decoupling operation calls

‚ λæ-calculus

‚ Examples

D. Ahman, M. Pretnar. Asynchronous Effects. (POPL 2021)

https://github.com/matijapretnar/aeff

https://github.com/danelahman/aeff-agda

‚ Some recent extensions (the higher-order part of the talk’s title)

https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda


Æff web interface

https://matija.pretnar.info/aeff/

https://matija.pretnar.info/aeff/


Synchrony of algebraic effects



Synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs  ˚ returnW

interrupt main program

. . .  op pV , y .Mq

signal op’s implementation

loomoon

main program’s execution blocked

MrW {y s

‚ Mop - handler, runner, top-level default implementation, . . .

‚ Forces all uses of algebraic operations to be synchronous

‚ Existing langs. do async. by delegating it to their lang. backends

‚ In contrast, we capture async. in a self-contained core calculus
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λæ-calculus



λæ-calculus: basics

‚ Extension of Levy’s fine-grain call-by-value λ-calculus

‚ Types: X ,Y ::“ b | . . . | X Ñ Y ! po, ιq | . . .

‚ Values: V ,W ::“ x | . . . | fun px :X q ÞÑ M | . . .

‚ Computations: M ,N ::“ return V | let x “ M in N | . . .

‚ Typing judgements: Γ $ V : X Γ $ M : X ! po, ιq

‚ Small-step operational semantics: M  N



λæ-calculus: signals

‚ Signalling that some op’s implementation needs to be executed

TyComp-Signal
op :Aop P o Γ $ V : Aop Γ $ M : X ! po, ιq

Γ $ Ò op pV ,Mq : X ! po, ιq

where Aop is a ground type (prod. and sum of base types)

‚ Operationally behave like algebraic operations

‚ let x “ Ò op pV ,Mq in N  Ò op pV , let x “ M in Nq

‚ But importantly, they do not block their continuations

‚ M  M 1 ùñ Ò op pV ,Mq Ò op pV ,M 1q
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λæ-calculus: interrupts

‚ Environment interrupting a computation (with some op’s result)

TyComp-Interrupt
Γ $ V : Aop Γ $ M : X ! po, ιq

Γ $ Ó op pW ,Mq : X ! pop Ó po, ιqq

where op acts on the effect annotations in conclusion

‚ Operationally behave like homomorphisms/effect handling

‚ Ó op pW , return V q return V

‚ Ó op pW , Ò op1 pV ,Mqq Ò op1 pV , Ó op pW ,Mqq

‚ . . .
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λæ-calculus: interrupt handlers

‚ Allow computation to react to interrupts

Ty-Comp-Promise
ι popq “ po 1, ι1q

Γ, x :Aop $ M : xX y ! po 1, ι1q Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ Operationally behave like (scoped) algebraic operations (!)

‚ let x “ ppromise pop x ÞÑ M1q as p in M2q in N

 promise pop x ÞÑ M1q as p in plet x “ M2 in Nq

‚ promise pop x ÞÑ Mq as p in Ò op pV ,Nq

 Ò op pV , promise pop x ÞÑ Mq as p in Nq
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λæ-calculus: interrupt handlers ctd.

‚ Allow computation to react to interrupts
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‚ And non-matching interrupts (op ‰ op1) are passed through

‚ Ó op pW , promise pop1 x ÞÑ Mq as p in Nq

 promise pop1 x ÞÑ Mq as p in Ó op pW ,Nq
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λæ-calculus: awaiting

‚ Enables programmers to selectively block execution

TyComp-Await
Γ $ V : xX y Γ, x :X $ N : Y ! po, ιq

Γ $ await V until xxy in N : Y ! po, ιq

‚ Operationally behave like pattern-matching (and alg. ops.)

‚ await xV y until xxy in N  NrV {xs

‚ let y “ pawait V until xxy in Mq in N

 await V until xxy in plet y “ M in Nq

‚ In contrast to earlier gadgets, await blocks its cont.’s execution (!)
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λæ-calculus: environment

‚ We model the environment by running computations in parallel

P ,Q ::“ run M | P || Q | Ò op pV ,Pq | Ó op pW ,Pq

(omitting typing judgement, typing rules, and type reduction)

‚ Small-step operational semantics P  Q: congruence rules +

‚ run pÒ op pV ,Mqq Ò op pV , run Mq

‚ pÒ op pV ,Pqq || Q  Ò op pV , pP || Ó op pV ,Qqqq

‚ P || pÒ op pV ,Qqq Ò op pV , pÓ op pV ,Pq || Qqq

‚ Ó op pW , run Mq run pÓ op pW ,Mqq

‚ . . .
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Examples



Example: (tail res.) alg. operation calls

‚ Based on the earlier observation

MoprV {xs  ˚ return W

interrupt main program
��

. . .  op pV , y .Mq

signal op’s implementation
OO

MrW {y s  . . .

‚ At call site
op pV , y .Mq

def
“

Ò callop pV , promise presultop y ÞÑ return xyyq as p in

await p until xyy in Mq

‚ At implementation site

promise pcallop x ÞÑ let y “ Mop in return xyyq as p in

await p until xyy in Ò resultop py , return pqq
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Example: remote function calls

‚ Server

let server f =
let rec loop () =

promise (call (x, callNo) ÞÑ let y = f x in Ò result (y, callNo); loop ())
as p in return p

in loop ()

‚ Client

let callWith x =
let callNo = !callCounter in callCounter := !callCounter + 1;
Ò call (x, callNo);
promise (result (y, callNo') when callNo = callNo' ÞÑ return xyy) as resultProm in
return (fun () Ñ await resultProm until xresultValuey in return resultValue)

‚ Shortcomings (fixes for those later)

‚ Necessitates general recursion in the core calculus

‚ No way to send the function f from client to server

‚ Subsequent calls are executed sequentially on the server
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Example: guarded interrupt handlers

‚ In previous example (and many others) we often write

promise (op x when guard ÞÑ comp) as p in cont

as a syntactic sugar for the recursively defined interrupt handler

let rec waitForGuard () =
promise (op x ÞÑ if guard then comp else waitForGuard ()) as p' in return p'

in
let p = waitForGuard () in cont

‚ For well-typedness, important we have comp : xXy instead of comp : X

‚ Again necessitates gen. rec. in the core calculus
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Example: preemptive multi-threading

‚ At the core of our approach is the following recursive definition

let rec waitForStop () =
promise (stop ÞÑ

promise (go ÞÑ return x()y) as p in (await p until x y in waitForStop ())
) as p' in return p'

‚ first wait for stop interrupt, but do not block execution

‚ next wait for go interrupt, and block execution

‚ repeat the cycle

‚ To initiate preemtive behaviour for some comp, run the composite

waitForStop (); comp

‚ op. sem. propagates promises out, and wrap them around comp

‚ Note: No need to access the cont. (of comp) in waitForStop (!)
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Other examples (see https://matija.pretnar.info/aeff/)

‚ Multi-party web application

‚ (Simulating) cancellations of remote function calls

‚ Parallel variant of runners of algebraic effects

‚ Non-blocking post-processing of promised values

promise (op x ÞÑ original interrupt handler) as p in
...
processop p with (xisy ÞÑ filter (fun i ÞÑ i > 0) is) as q in
processop q with (xjsy ÞÑ fold (fun j j' ÞÑ j ∗ j') 1 js) as r in
processop r with (xky ÞÑ Ò productOfPositiveElements k) as in
...

where

processop p with (xxy ÞÑ comp) as q in cont
=
promise (op ÞÑ await p until xxy in let y = comp in return xyy) as q in cont

https://matija.pretnar.info/aeff/
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‚ Non-blocking post-processing of promised values

promise (op x ÞÑ original interrupt handler) as p in
...
processop p with (xisy ÞÑ filter (fun i ÞÑ i > 0) is) as q in
processop q with (xjsy ÞÑ fold (fun j j' ÞÑ j ∗ j') 1 js) as r in
processop r with (xky ÞÑ Ò productOfPositiveElements k) as in
...

where

processop p with (xxy ÞÑ comp) as q in cont
=
promise (op ÞÑ await p until xxy in let y = comp in return xyy) as q in cont

https://matija.pretnar.info/aeff/


Resolving λæ’s shortcomings



S1: general recursion in the core calculus

‚ Used in almost all examples for reinstalling interrupt handlers

‚ Solution: reinstallable interrupt handlers

Ty-Comp-RePromise

Γ, x :Aop, r : 1 Ñ xX y ! pH, top ÞÑ po 1, ι1quq $ M : xX y ! po 1, ι1q

po 1, ι1q Ď ι popq Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x r ÞÑ Mq as p in N : Y ! po, ιq

‚ Operationally only difference in triggering int. handlers

‚ Ó op pW , promise pop x r ÞÑ Mq as p in Nq

 let p “ MrW {x ,

pfun ÞÑ promise pop x r ÞÑ Mq as p in return pq{r s

in Ó op pW ,Nq
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S1: general recursion in the core calculus

‚ Used in almost all examples for reinstalling interrupt handlers

‚ Solution: reinstallable interrupt handlers

Ty-Comp-RePromise

Γ, x :Aop, r : 1 Ñ xX y ! pH, top ÞÑ po 1, ι1quq $ M : xX y ! po 1, ι1q

po 1, ι1q Ď ι popq Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x r ÞÑ Mq as p in N : Y ! po, ιq

‚ For example, the preemptive multithreading now becomes

let waitForStop () =
promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in (await p until x y in r ())
) as p' in return p'



S2: signal/interrupt payloads ground-typed

‚ E.g., cannot send functions for remote execution

‚ Solution: off-the-shelf Fitch-style modal types (Clouston et al.)

TyVal-Variable

X is mobile _ I R Γ1

Γ, x :X , Γ1 $ x : X

TyVal-Box
Γ,I $ V : X

Γ $ rV s : rX s

TyComp-Unbox
Γ $ V : rX s Γ, x :X $ M : Y ! po, ιq

Γ $ unbox V as rxs in M : Y ! po, ιq

Aop ::“ ground types | rX s pmobile typesq

‚ Gives us type-safe higher-order payloads for signals/interrupts

‚ Γ, p : xX y $ V : Aop ùñ Γ $ V : Aop
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S3: no dynamic process/thread creation

‚ E.g., remote functions have to be executed sequentially

‚ Solution: type safe spawn via modal types

TyComp-Spawn
Γ,I $ M : 1 ! po 1, ι1q Γ $ N : X ! po, ιq

Γ $ spawn pM ,Nq : X ! po, ιq

‚ Operationally propagates outwards (like scoped alg. op.)

‚ let x “ spawn pM1,M2q in N  spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where I provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq run M || run N

‚ Does not block its continuation



S3: no dynamic process/thread creation

‚ E.g., remote functions have to be executed sequentially

‚ Solution: type safe spawn via modal types

TyComp-Spawn
Γ,I $ M : 1 ! po 1, ι1q Γ $ N : X ! po, ιq

Γ $ spawn pM ,Nq : X ! po, ιq

‚ Operationally propagates outwards (like scoped alg. op.)

‚ let x “ spawn pM1,M2q in N  spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where I provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq run M || run N

‚ Does not block its continuation



S3: no dynamic process/thread creation

‚ E.g., remote functions have to be executed sequentially

‚ Solution: type safe spawn via modal types

TyComp-Spawn
Γ,I $ M : 1 ! po 1, ι1q Γ $ N : X ! po, ιq

Γ $ spawn pM ,Nq : X ! po, ιq

‚ Operationally propagates outwards (like scoped alg. op.)

‚ let x “ spawn pM1,M2q in N  spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where I provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq run M || run N

‚ Does not block its continuation



S3: no dynamic process/thread creation

‚ E.g., remote functions have to be executed sequentially

‚ Solution: type safe spawn via modal types

TyComp-Spawn
Γ,I $ M : 1 ! po 1, ι1q Γ $ N : X ! po, ιq

Γ $ spawn pM ,Nq : X ! po, ιq

‚ Remote function calls can now execute in parallel

let server f =
promise (call (x, callNo) r ÞÑ

spawn (let y = f x in Ò result (y, callNo),
r ())

) as p in return p



Conclusion

‚ A core calculus for asynchronous algebraic effects

‚ Could it serve as a spec. for an efficient/practical implementation?

‚ Janez has worked on a more efficient implementation of λæ

‚ Implementing this spec. using handlers? (Lindley & Poulson)

‚ Various yet to be resolved details concerning λæ’s denot. sem.

‚ Same algebraic & modal ideas also applicable without ||

asyncM as p inN

with

async pÒ op pV ,Mqq as p inN  Ò op pV , asyncM as p inNq

asyncM as p in pÒ op pV ,Nqq Ò op pV , asyncM as p inNq
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Appendix



λæ-calculus: effect annotations

‚ The effect annotations po, ιq are drawn from sets O and I , given by

O “ PpΣq I “ νZ .Σ ñ pO ˆ Z qK

where Σ is the set of all signal/interrupt names

‚ Note: for meta-theory only, could also have I as a least fixpoint

‚ O and I come with natural partial orders for subtyping

‚ The action op Ó po, ιq reveals effects of int. handlers for op

op Ó po, ιq
def
“

#

po Y o 1, ιrop ÞÑ Ks Y ι1q if ι popq “ po 1, ι1q

po, ιq otherwise



λæ-calculus: effect annotations

‚ The effect annotations po, ιq are drawn from sets O and I , given by

O “ PpΣq I “ νZ .Σ ñ pO ˆ Z qK

where Σ is the set of all signal/interrupt names

‚ Note: for meta-theory only, could also have I as a least fixpoint

‚ O and I come with natural partial orders for subtyping

‚ The action op Ó po, ιq reveals effects of int. handlers for op

op Ó po, ιq
def
“

#

po Y o 1, ιrop ÞÑ Ks Y ι1q if ι popq “ po 1, ι1q

po, ιq otherwise



λæ-calculus: effect annotations

‚ The effect annotations po, ιq are drawn from sets O and I , given by

O “ PpΣq I “ νZ .Σ ñ pO ˆ Z qK

where Σ is the set of all signal/interrupt names

‚ Note: for meta-theory only, could also have I as a least fixpoint

‚ O and I come with natural partial orders for subtyping

‚ The action op Ó po, ιq reveals effects of int. handlers for op

op Ó po, ιq
def
“

#

po Y o 1, ιrop ÞÑ Ks Y ι1q if ι popq “ po 1, ι1q

po, ιq otherwise


