When Is a Container a Comonad?

Danel Ahman, University of Cambridge James Chapman, Tarmo Uustalu, Institute of Cybernetics

Tallinn, 28 March 2012

Container syntax of datatypes

- Many datatypes can be represented in terms of shapes and positions in shapes
- Examples: lists, streams, colists, trees, etc.
- Non-examples: sets, bags
- Containers provide us with a handy syntax to analyze such datatypes

Directing containers?

- Containers often exhibit a natural notion of subshape given by positions in shapes
- Natural questions arise:
(1) What is the appropriate specialization of containers?
(2) Does this admit a nice categorical theory?

containers

- A container is given by
- $S:$ Set
- $P: S \rightarrow$ Set

Directed containers

- A directed container is given by
- S : Set
- $P: S \rightarrow$ Set
and
- $\downarrow: \Pi s: S . P s \rightarrow S$
- o: $\Pi\{s: S\} . P s$
- $\oplus: \Pi\{s: S\} . \Pi p: P s . P(s \downarrow p) \rightarrow P s$
(subshape positions)
such that
- $\forall\{s\} . s \downarrow o=s$,
- $\forall\left\{s, p, p^{\prime}\right\} . s \downarrow\left(p \oplus p^{\prime}\right)=(s \downarrow p) \downarrow p^{\prime}$,
- $\forall\{s, p\} . p \oplus\{s\} \circ=p$,
- $\forall\{s, p\} . \circ\{s\} \oplus p=p$,
- $\forall\left\{s, p, p^{\prime}, p^{\prime \prime}\right\} .\left(p \oplus\{s\} p^{\prime}\right) \oplus p^{\prime \prime}=p \oplus\left(p^{\prime} \oplus p^{\prime \prime}\right)$.

Directed containers illustrated

Non-empty lists and streams

- Non-empty lists
- $S=$ Nat (shapes)
- $P s=[0 . . s]$
- $s \downarrow p=s-p$
- $o=0$
- $p \oplus\{s\} p^{\prime}=p+p^{\prime}$
- Streams are represented similarly with
$S=1$ and $P *=$ Nat

Non-empty lists illustrated

Non-empty lists illustrated

Non-empty lists illustrated

Non-empty lists illustrated

Non-empty lists illustrated

Non-empty lists with a focus

- Zippers (tree-like datastructures with a focus position) consist of a context (path from the root to the focus position, with side subtrees) and a focal subtree
- Non-empty lists with a focus
- $S=$ Nat \times Nat
- $P\left(s_{0}, s_{1}\right)=\left[-s_{0} . . s_{1}\right]=\left[-s_{0} . .-1\right] \cup\left[0 . . s_{1}\right]$
- $\left(s_{0}, s_{1}\right) \downarrow p=\left(s_{0}+p, s_{1}-p\right)$
- $\circ\left\{s_{0}, s_{1}\right\}=0$
- $p \oplus\left\{s_{0}, s_{1}\right\} p^{\prime}=p+p^{\prime}$

Non-empty list zippers illustrated

Non-empty list zippers illustrated

Non-empty list zippers illustrated

$$
s \downarrow p=(7,2) \quad s=(4,5)
$$

Non-empty list zippers illustrated

$$
s \downarrow p=(7,2)
$$

0

Non-empty list zippers illustrated

$$
s \downarrow p=(7,2)
$$

Non-empty list zippers illustrated

Non-empty list zippers illustrated

container morphisms

- A container morphism $t \triangleleft q$ between

$$
\begin{aligned}
& (S \triangleleft P \quad) \text { and }\left(S^{\prime} \triangleleft P^{\prime} \quad\right. \text { is given by } \\
& \text { • } t: S \rightarrow S^{\prime} \\
& \text { - } q: \Pi\{s: S\} \cdot P^{\prime}(t s) \rightarrow P s
\end{aligned}
$$

- Identity id ${ }^{\mathrm{c}}=\mathrm{id}\{S\} \triangleleft \lambda\{s\}$.id $\{P s\}$
- Composition $\left(t^{\prime} \triangleleft q^{\prime}\right) \circ{ }^{\mathrm{c}}(t \triangleleft q)=$

$$
=\left(t^{\prime} \circ t\right) \triangleleft\left(\lambda\{s\} \cdot q\{s\} \circ q^{\prime}\{t s\}\right)
$$

- Lireated containers form a category Cont

Directed container morphisms

- A directed container morphism $t \triangleleft q$ between ($S \triangleleft P, \downarrow, \circ, \oplus$) and ($S^{\prime} \triangleleft P^{\prime}, \downarrow^{\prime}, o^{\prime}, \oplus^{\prime}$) is given by
- $t: S \rightarrow S^{\prime}$
- $q: \Pi\{s: S\} . P^{\prime}(t s) \rightarrow P s$
such that

$$
\begin{aligned}
& \text { - } \forall\{s, p\} \cdot t(s \downarrow q p)=t s \downarrow^{\prime} p \\
& \text { - } \forall\{s\} \cdot \circ\{s\}=q\left(o^{\prime}\{t s\}\right) \\
& \text { - } \forall\left\{s, p, p^{\prime}\right\} \cdot q p \oplus\{s\} q p^{\prime}=q\left(p \oplus^{\prime}\{t s\} p^{\prime}\right)
\end{aligned}
$$

- Identity id ${ }^{\mathrm{dc}}=\mathrm{id}\{S\} \triangleleft \lambda\{s\}$.id $\{P s\}$
- Composition $\left(t^{\prime} \triangleleft q^{\prime}\right) \circ^{\text {dc }}(t \triangleleft q)=$

$$
=\left(t^{\prime} \circ t\right) \triangleleft\left(\lambda\{s\} \cdot q\{s\} \circ q^{\prime}\{t s\}\right)
$$

- Directed containers form a category DCont

Interpretation (semantics) of

containers

- Any container $(S \triangleleft P \quad$) defines a functor $\quad \llbracket S \triangleleft P \quad \rrbracket^{\mathrm{c}}=(D \quad)$ where
- $D:$ Set \rightarrow Set

$$
\begin{aligned}
& D X=\Sigma s: S . P s \rightarrow X \\
& D f(s, v)=(s, f \circ v)
\end{aligned}
$$

Interpretation (semantics) of directed containers

- Any directed container $(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ defines a comonad $\llbracket S \triangleleft P, \downarrow, \mathrm{o}, \oplus \rrbracket^{\text {dc }}=(D, \varepsilon, \delta)$ where
- $D:$ Set \rightarrow Set

$$
\begin{aligned}
& D X=\Sigma s: S . P s \rightarrow X \\
& D f(s, v)=(s, f \circ v)
\end{aligned}
$$

- $\varepsilon: \forall\{X\} .(\Sigma s: S . P s \rightarrow X) \rightarrow X$ $\varepsilon(s, v)=v(o\{s\})$
- $\delta: \forall\{X\} \cdot(\Sigma s: S . P s \rightarrow X) \rightarrow$

$$
\Sigma s: S . P s \rightarrow \Sigma s^{\prime}: S . P s^{\prime} \rightarrow X
$$

$$
\delta(s, v)=\left(s, \lambda p .\left(s \downarrow p, \lambda p^{\prime} \cdot v\left(p \oplus\{s\} p^{\prime}\right)\right)\right)
$$

Interpretation of

container morphisms

- Any container morphism $t \triangleleft q$ between
$(S \triangleleft P$
) and ($S^{\prime} \triangleleft P^{\prime}$
) defines
a natural transformation

$$
\llbracket t \triangleleft q \rrbracket^{\mathrm{c}}
$$

between $\llbracket S \triangleleft P$
\rrbracket^{c} and $\llbracket S^{\prime} \triangleleft P^{\prime}$
』 ${ }^{\mathrm{c}}$

- $\llbracket t \triangleleft q \rrbracket^{\mathrm{c}}: \forall\{X\} .(\Sigma s: S . P s \rightarrow X) \rightarrow$

$$
\llbracket t \triangleleft q \rrbracket^{\mathrm{c}}(s, v)=(t s, v \circ q\{s\})
$$

$$
\Sigma s^{\prime}: S^{\prime} \cdot P^{\prime} s^{\prime} \rightarrow X
$$

- $\llbracket-\rrbracket^{\mathrm{c}}$ preserves the identities and composition
- $\llbracket-\rrbracket^{\mathrm{c}}$ is a functor from Cont to Endo
(Set)

Interpretation of directed container morphisms

- Any directed container morphism $t \triangleleft q$ between $(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ and $\left(S^{\prime} \triangleleft P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime}\right)$ defines a comonad morphism $\llbracket t \triangleleft q \rrbracket^{\text {dc }}$ between $\llbracket S \triangleleft P, \downarrow, \mathrm{o}, \oplus \rrbracket^{\text {dc }}$ and $\llbracket S^{\prime} \triangleleft P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime} \rrbracket^{\mathrm{dc}}$

$$
\begin{aligned}
& \llbracket t \triangleleft q \rrbracket^{\mathrm{dc}}: \forall\{X\} .(\Sigma s: S . P s \rightarrow X) \rightarrow \\
& \llbracket t \triangleleft q \rrbracket^{\mathrm{dc}}(s, v)=(t s, v \circ q\{s\}) \quad \Sigma s^{\prime}: S^{\prime} . P^{\prime} s^{\prime} \rightarrow X
\end{aligned}
$$

- $\llbracket-\rrbracket^{\text {dc }}$ preserves the identities and composition
- $\llbracket-\rrbracket^{\text {dc }}$ is a functor from DCont to

Cmnds(Set)

Interpretation is fully faithful

- A natural transformation

τ

between $\llbracket S \triangleleft P$
\rrbracket^{c} and $\llbracket S^{\prime} \triangleleft P^{\prime}$
! ${ }^{\text {c }}$ defines a container morphism $\ulcorner\tau\urcorner^{\mathrm{c}}=(t \triangleleft q)$ between $(S \triangleleft P$
) and ($S^{\prime} \triangleleft P^{\prime}$

- $t: S \rightarrow S^{\prime}$

$$
t s=\mathrm{fst}(\tau\{P s\}(s, \mathrm{id}))
$$

- $q: \Pi\{s: S\} . P^{\prime}(t s) \rightarrow P s$

$$
q\{s\}=\operatorname{snd}(\tau\{P s\}(s, i d))
$$

- $\ulcorner\tau\urcorner{ }^{\mathrm{c}}$ satisfies,
- 「 $\llbracket h \rrbracket{ }^{\mathrm{c}} \mathrm{c}^{\mathrm{c}}=h$
- $\ulcorner\tau\urcorner{ }^{\mathrm{c}}=\left\ulcorner\tau^{\prime}\right\urcorner \mathrm{c}$ implies $\tau=\tau^{\prime}$
- $\llbracket-\rrbracket^{\mathrm{c}}$ is a fully faithful functor

Interpretation is fully faithful

- A
comonad morphism τ
between $\llbracket S \triangleleft P, \downarrow, \mathrm{o}, \oplus \rrbracket^{\text {dc }}$ and $\llbracket S^{\prime} \triangleleft P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime} \rrbracket^{\text {dc }}$ defines a directed container morphism $\ulcorner\tau\urcorner \mathrm{dc}=(t \triangleleft q)$ between $(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ and $\left(S^{\prime} \triangleleft P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime}\right)$
- $t: S \rightarrow S^{\prime}$

$$
t s=\mathrm{fst}(\tau\{P s\}(s, \mathrm{id}))
$$

- $q: \Pi\{s: S\} . P^{\prime}(t s) \rightarrow P s$
$q\{s\}=\operatorname{snd}(\tau\{P s\}(s, i d))$
- $\ulcorner\tau\urcorner \mathrm{dc}$ satisfies,
- $\left\ulcorner\llbracket h \rrbracket^{\mathrm{dc}}\right\urcorner \mathrm{dc}=h$
- $\ulcorner\tau\urcorner \mathrm{dc}=\left\ulcorner\tau^{\prime}\right\urcorner \mathrm{dc}$ implies $\tau=\tau^{\prime}$
- $\llbracket-\rrbracket^{\text {dc }}$ is a fully faithful functor

Containers \cap comonads $=$ directed containers

- Any comonad (D, ε, δ), such that $D=\llbracket S \triangleleft P \rrbracket^{\text {c }}$, determines a directed container
$\lceil(D, \varepsilon, \delta), S \triangleleft P\rceil=(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$
where
- $s \downarrow p=\operatorname{snd}\left(t^{\delta} s\right) p$
- o $\{s\}=q^{\varepsilon}\{s\} *$
- $p \oplus\{s\} p^{\prime}=q^{\delta}\{s\}\left(p, p^{\prime}\right)$
using the container morphisms
- $t^{\varepsilon} \triangleleft q^{\varepsilon}: S \triangleleft P \rightarrow \mathrm{Id}^{\mathrm{c}}$ $t^{\varepsilon} \triangleleft q^{\varepsilon}=\left\ulcorner\mathrm{e} \circ \varepsilon^{\wedge}\right.$
- $t^{\delta} \triangleleft q^{\delta}: S \triangleleft P \rightarrow(S \triangleleft P) .^{c}(S \triangleleft P)$ $t^{\delta} \triangleleft q^{\delta}=\ulcorner\mathrm{m}\{S \triangleleft P\}\{S \triangleleft P\} \circ \delta\urcorner c$
- It is forced that
- $\forall\{s\} . t^{\varepsilon} s=*$ and $\forall\{s\}$. fst $\left(t^{\delta} s\right)=s$

Containers \cap comonads $=$ directed containers ctd.

- For any comonad (D, ε, δ), such that $D=\llbracket S \triangleleft P \rrbracket^{\text {c }}$,

$$
\text { - } \llbracket\lceil(D, \varepsilon, \delta), S \triangleleft P\rceil \rrbracket^{\mathrm{dc}}=(D, \varepsilon, \delta)
$$

- For any directed container $(S \triangleleft P, \downarrow, \circ, \oplus)$,

$$
\text { - }\left\lceil\llbracket S \triangleleft P, \downarrow, \mathrm{o}, \oplus \rrbracket^{\mathrm{dc}}, S \triangleleft P\right\rceil=(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)
$$

- The following is a pullback in CAT:

Constructions

- Coproduct of directed containers
- Cofree directed containers
- Focussing of a container
- Strict directed containers
- Composition of a strict and non-strict directed container
- Product of strict directed containers
- Distributive laws between directed containers

Conclusion

- Directed containers are a natural notion-cover a natural class of examples and admit an elegant theory
- They give a characterization of containers whose interpretation carries a comonad structure

Questions？

Extra material

Coproduct of directed containers

- Given directed containers $E_{0}=\left(S_{0} \triangleleft P_{0}, \downarrow_{0}, o_{0}, \oplus_{0}\right)$, $E_{1}=\left(S_{1} \triangleleft P_{1}, \downarrow_{1}, \mathrm{o}_{1}, \oplus_{1}\right)$, their coproduct is $E=E_{0}+E_{1}$ given as $(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ where
- $S=S_{0}+S_{1}$
- $P(\mathrm{inl} s)=P_{0} s$

$$
P(\mathrm{inr} s)=P_{1} s
$$

- inl $s \downarrow p=\operatorname{inl}\left(s \downarrow_{0} p\right)$

$$
\operatorname{inr} s \downarrow p=\operatorname{inr}\left(s \downarrow_{1} p\right)
$$

- $o\{$ inl $s\}=o_{0}\{s\}$ $o\{\operatorname{inr} s\}=o_{1}\{s\}$
- $p \oplus\{$ inls $\} p^{\prime}=p \oplus_{0}\{s\} p^{\prime}$ $p \oplus\left\{\operatorname{inrs} s p^{\prime}=p \oplus_{1}\{s\} p^{\prime}\right.$
- $\llbracket E_{0}+E_{1} \rrbracket^{\mathrm{dc}} \cong \llbracket E_{0} \rrbracket^{\mathrm{dc}}+\llbracket E_{1} \rrbracket^{\mathrm{dc}}$

The cofree directed container

- Given a container $C=\left(S_{0} \triangleleft P_{0}\right)$, the cofree directed container on it is $E=(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ where
- $S=\nu Z . \Sigma s: S_{0} \cdot P_{0} s \rightarrow Z$,
- $P=\mu Z . \lambda(s, v) .1+\Sigma p: P_{0} s . Z(v p)$,
- o $\{s, v\}=\mathrm{inl} *$,
- $(s, v) \downarrow \mathrm{inl} *=(s, v)$,
$(s, v) \downarrow \operatorname{inr}\left(p, p^{\prime}\right)=v p \downarrow p^{\prime}$,
- inl $* \oplus\{s, v\} p^{\prime \prime}=p^{\prime \prime}$, $\operatorname{inr}\left(p, p^{\prime}\right) \oplus\{s, v\} p^{\prime \prime}=\operatorname{inr}\left(p, p^{\prime} \oplus\{v p\} p^{\prime \prime}\right)$.
- $D X=\nu Z . X \times \llbracket C \rrbracket^{c} Z$
- is the carrier of the cofree comonad on the functor $\llbracket C \rrbracket^{\text {c }}$
- Instead of ν, one could also use μ in S, to get the directed container representation of the cofree recursive comonad.

Focussing a container

- Given a container $C_{0}=\left(S_{0} \triangleleft P_{0}\right)$, we can focus it by defining a directed container $E=(S \triangleleft P, \downarrow, \mathrm{o}, \oplus)$ where
- $S=\Sigma s: S_{0} \cdot P_{0} s$
- $P(s, p)=P_{0} s$
- $\circ\{s, p\}=p$
- $(s, p) \downarrow p^{\prime}=\left(s, p^{\prime}\right)$
- $p^{\prime} \oplus\{s, p\} p^{\prime \prime}=p^{\prime \prime}$
- Focussed container interprets into the canonical comonad structure on $\partial \llbracket C \rrbracket^{\mathrm{c}} \times \mathrm{Id}$ where ∂F denotes the derivative of F

Directed container from a monoid

- Any monoid (M, e, \bullet) gives a directed container

$$
E=(S \triangleleft P, \downarrow, \mathrm{o}, \oplus) \text { by }
$$

- $S=1$
- $P *=M$
- $* \downarrow p=*$
- $o\{*\}=e$
- $p \oplus\{*\} p^{\prime}=p \bullet p^{\prime}$
- $\llbracket E \rrbracket^{\mathrm{dc}} X=\Sigma s: * . M \rightarrow X \cong M \rightarrow X$

Containers \cap Monads $=$?

- Given a container $C=(S \triangleleft P)$
- The structure (η, μ) of a monad on $\llbracket S \triangleleft P \rrbracket^{\text {c }}$ could be represented as
- e:S (for the shape map for η)
- • : Пs : S. $(P s \rightarrow S) \rightarrow S$ (for the shape map for μ)
- $\uparrow: \Pi\{s: S\} . \Pi v: P s \rightarrow S . P(s \bullet v) \rightarrow P s$ (for the position map for μ)
- $厂: \Pi\{s: S\} . \Pi v: P s \rightarrow S$.

$$
\begin{aligned}
& \Pi p: P(s \bullet v) . P(v(v \uparrow\{s\} p)) \\
& \quad \text { (for the position map for } \mu)
\end{aligned}
$$

