
Dependent Types and
Fibred Computational Effects

Danel Ahman1

(joint work with Neil Ghani2 and Gordon Plotkin1)

1LFCS, University of Edinburgh

2MSP Group, University of Strathclyde

April 4, 2016

Outline

Language design principles for combining

• dependent types (Π,Σ, IdA(V ,W), ...)

• computational effects (state, I/O, probability, recursion, ...)

Our goal

• have a mathematically natural story

• use established math. techniques

• cover a wide range of computational effects

This work was guided by two problems

• effectful programs in types

• assigning types to effectful programs

Effectful programs in types
(type-dependency in the presence of effects)

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

• e.g., if M is receive(y .N)

A1: In this work we say no

• types should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] statically?

• we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes

• type-dependency (z :C ` A(z)) becomes “homomorphic”

• lifting effect operations from terms to types, e.g., 〈receive〉(y .A)

• similarities with refinement types and op. modalities [A.,P.’15]

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

• e.g., if M is receive(y .N)

A1: In this work we say no

• types should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] statically?

• we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes

• type-dependency (z :C ` A(z)) becomes “homomorphic”

• lifting effect operations from terms to types, e.g., 〈receive〉(y .A)

• similarities with refinement types and op. modalities [A.,P.’15]

Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?

• e.g., if M is receive(y .N)

A1: In this work we say no

• types should only depend on static information

• e.g., how would one compute A[receive(y .M)/x] statically?

• we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes

• type-dependency (z :C ` A(z)) becomes “homomorphic”

• lifting effect operations from terms to types, e.g., 〈receive〉(y .A)

• similarities with refinement types and op. modalities [A.,P.’15]

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Some of the other options are λML and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for treating of sequential composition

• also for systematically integrating dependent- and effect-typing
(ongoing work)

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Some of the other options are λML and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for treating of sequential composition

• also for systematically integrating dependent- and effect-typing
(ongoing work)

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Some of the other options are λML and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for treating of sequential composition

• also for systematically integrating dependent- and effect-typing
(ongoing work)

Assigning types to effectful programs
(i.e., typing sequential composition)

Assigning types to effectful programs

The problem: The standard typing rule for seq. composition

Γ c̀ M : F A Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

is not correct any more because x can appear free in the type

C

in the conclusion

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C)

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C [2/x] or N[3/x] at type C [3/x]

Idea: M denotes an element of the coproduct of algebras

C [2/x] + C [3/x]
def
= F

(
U
(
C [2/x]

)
+ U

(
C [3/x]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C)

Putting these ideas together
(a core dependently-typed calculus with comp. effects)

A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

• general computational effects

• a clear distinction between

• values

• computations

• with a principled treatment of sequential composition

• restricting free variables in seq. composition

• based on coproducts of algebras

• with a natural denotational semantics, using standard techniques

• dep. types — comprehension categories

• comp. effects — adjunction models

A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D

A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using a judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using a judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using a judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Note: We need to define K in such a way that the intended
evaluation order is preserved, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Note: We need to define K in such a way that the intended
evaluation order is preserved, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Note: We need to define K in such a way that the intended
evaluation order is preserved, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Γ v̀ V : A
Γ c̀ returnV : F A

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

. . .

Γ ` C

Γ | z :C h̀ z : C

. . .

Γ v̀ V : A Γ | z :C h̀ K : D[V /x]

Γ | z :C h̀ 〈V ,K 〉 : Σx :A.D

Γ | z1 :C h̀ K : Σx :A.D1 Γ ` D2 Γ, x :A | z2 :D1 h̀ L : D2

Γ | z1 :C h̀ K to 〈x :A, z2 :D1〉 in L : D2

A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Γ c̀ M : F A

Γ, x :A c̀ N : C (x)

Γ, x :A c̀ 〈x ,N〉 : Σy :A.C (y)

Γ c̀ M to x :A in 〈x ,N〉 : Σy :A.C (y)

The seq. comp. rule for λML is justified by the type isomorphism

Γ ` Σx :A.F (B) ∼= F (Σx :A.B)

Operations and equations
(primitives for programming with side-effects)

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I and O are both pure value types

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols mostly a convenience

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I and O are both pure value types

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols mostly a convenience

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I and O are both pure value types

op : (xi : I) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols mostly a convenience

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi])

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z] = op

D
V

(
x .K [M/z]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I)−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)

One way forward with handlers

User-defined algebra type:

(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi]→ A v̀ Vop : A}op:(xi :I)−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I)−→O〉

Encoding Plotkin-Pretnar handlers:

M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

def
=

forceC

(
thunk

(
M to x :A in force〈UC ,...thunk (Mop)...〉 (thunkMret)︸ ︷︷ ︸

:UC︸ ︷︷ ︸
:〈UC ,...thunk (Mop)...〉

)

︸ ︷︷ ︸
:UC

)

Categorical semantics
(fibrations and adjunctions)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we have a partial interpretation
function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we have a partial interpretation
function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Vp(A) −→ V{A}
• and the value Σ- and Π-types are interpreted as adjoints

ΣA a π∗A a ΠA

(ΣA is also required to be strong, i.e., support dep. elimination)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: ii) a split fibration q and a split fib. adj. F a U

B→

cod --

VPoo

p a

!!

{−}a

}}

F

**⊥ C

qnn

U

jj

B

1

OO

• we extend J−K so that it maps (if defined):

• a ctx. Γ and a comp. type C to an object JΓ;CK in CJΓK

• a ctx. Γ and a comp. term M to JΓ;MK : 1JΓK → U(Z) in VJΓK

• a ctx. Γ, a comp. type C and a hom. term K to
JΓ;C ;KK : JΓ;CK→ Z in CJΓK

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: ii) a split fibration q and a split fib. adj. F a U

B→

cod --

VPoo

p a

!!

{−}a

}}

F

**⊥ C

qnn

U

jj

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Cp(A) −→ C{A}
• and the comp. Σ- and Π-types are interpreted again as adjoints

ΣA a π∗A a ΠA

Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for any monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S

Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for any monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S

Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for any monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S

Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for any monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S

Examples of fibred adjunction models

Another example:

• for a CPO-enriched monad T : CPO −→ CPO with a least
algebraic operation Ω : 0 and reflexive coequalizers in CPOT

F̂T a ÛT : CFam(CPOT) −→ CFam(CPO)

where CFam(CPO) is the cat. of continuous families(
(X ,vX) , A : (X ,vX) −→ CPOEP

)
• this allows us to treat general recursion as a comp. effect by

Γ, x :UC c̀ M : C

Γ c̀ µx :UC .M : C

• but have to restrict A in IdA(V ,W) to be discrete to define

Id(X ,A)
def
=
(
{π∗(X ,A)(X ,A)}, 〈x , a, a′〉 7→

∐
{? | a=a′} 1

)

Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• systematic treatment of seq. composition (comp. Σ-types)

• algebraic effects and handlers

• natural denotational semantics, using standard math. tools

Ongoing work

• integrating dependent- and effect-typing

• e.g., fibred parametrised adjunctions for a principled account of
resource-dependent effects in Idris

EffM ε1

(
(x :A).ε2(x)

)
= Uε1

(
Σx :A.Fε2(x)(1)

)
• homomorphic type-dependency on effectful computations

Thank you for listening!

Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• systematic treatment of seq. composition (comp. Σ-types)

• algebraic effects and handlers

• natural denotational semantics, using standard math. tools

Ongoing work

• integrating dependent- and effect-typing

• e.g., fibred parametrised adjunctions for a principled account of
resource-dependent effects in Idris

EffM ε1

(
(x :A).ε2(x)

)
= Uε1

(
Σx :A.Fε2(x)(1)

)
• homomorphic type-dependency on effectful computations

Thank you for listening!

