Dependent Types and Fibred Computational Effects

Danel Ahman ${ }^{1}$

(joint work with Neil Ghani ${ }^{2}$ and Gordon Plotkin ${ }^{1}$)

${ }^{1}$ LFCS, University of Edinburgh
${ }^{2}$ MSP Group, University of Strathclyde

April 4, 2016

Outline

Language design principles for combining

- dependent types
$\left(\Pi, \Sigma, \operatorname{Id}_{A}(V, W), \ldots\right)$
- computational effects
(state, I/O, probability, recursion, ...)
Our goal
- have a mathematically natural story
- use established math. techniques
- cover a wide range of computational effects

This work was guided by two problems

- effectful programs in types
- assigning types to effectful programs

Effectful programs in types

(type-dependency in the presence of effects)

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:

$$
x: \text { Nat } \vdash A(x) \stackrel{\text { def }}{=} \text { if }(x \bmod 2==0) \text { then String else Char }
$$

Q: Should we allow $A[M / x]$ if M is an effectful program?

- e.g., if M is receive $(y . N)$

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:

$$
x: \text { Nat } \vdash A(x) \stackrel{\text { def }}{=} \text { if }(x \bmod 2==0) \text { then String else Char }
$$

Q: Should we allow $A[M / x]$ if M is an effectful program?

- e.g., if M is receive $(y . N)$

A1: In this work we say no

- types should only depend on static information
- e.g., how would one compute $A[\operatorname{receive}(y . M) / x]$ statically?
- we recover dependency on effectful computations via thunks

Effectful programs in types

Let's assume that we have a dependent type $A(x)$, e.g.:
$x: \operatorname{Nat} \vdash A(x) \stackrel{\text { def }}{=}$ if $(x \bmod 2==0)$ then String else Char
Q: Should we allow $A[M / x]$ if M is an effectful program?

- e.g., if M is receive $(y . N)$

A1: In this work we say no

- types should only depend on static information
- e.g., how would one compute $A[\operatorname{receive}(y . M) / x]$ statically?
- we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes

- type-dependency $(z: \underline{C} \vdash A(z))$ becomes "homomorphic"
- lifting effect operations from terms to types, e.g., \langle receive $\rangle(y . A)$
- similarities with refinement types and op. modalities [A.,P.'15]

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

- value types $\Gamma \vdash A$
- computation types $\Gamma \vdash \underline{C}$ (MLTT + thunks $+\ldots$)
- where Γ contains only value variables $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$

Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

- value types $\Gamma \vdash A$
- computation types $\Gamma \vdash \underline{C}$ (MLTT + thunks $+\ldots$)
- where Γ contains only value variables $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$

Note: Some of the other options are λ_{ML} and FGCBV

- but basing the work on CBPV/EEC gives a more general story
- especially for treating of sequential composition
- also for systematically integrating dependent- and effect-typing (ongoing work)

Assigning types to effectful programs

(i.e., typing sequential composition)

Assigning types to effectful programs

The problem: The standard typing rule for seq. composition

$$
\frac{\Gamma t_{c} M: F A \quad \Gamma, x: A t_{c} N: \underline{C}}{\Gamma t_{c} M \text { to } x: A \operatorname{in~} N: \underline{C}}
$$

is not correct any more because x can appear free in the type

$$
\underline{C}
$$

in the conclusion

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{\bar{c}} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., even to write effectful programs modularly

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{\bar{c}} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., even to write effectful programs modularly
- take monadic parsing of well-typed syntax and consider writing a parser for function application

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., even to write effectful programs modularly
- take monadic parsing of well-typed syntax and consider writing a parser for function application
- it is natural to modularly decompose the code into
. ℓ_{c} parseFun : $F\left(\Sigma y_{1}:\right.$ LangType. Σy_{2} :LangType.LangSyntax(fun $\left.\left.y_{1} y_{2}\right)\right)$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C}, i.e.,

$$
\frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{c} M \text { to } x: A \text { in } N: \underline{C}}
$$

But sometimes it is necessary for \underline{C} to depend on x !

- e.g., even to write effectful programs modularly
- take monadic parsing of well-typed syntax and consider writing a parser for function application
- it is natural to modularly decompose the code into
- t $_{c}$ parseFun: $F\left(\Sigma y_{1}:\right.$ LangType. Σy_{2} :LangType.LangSyntax $\left(\right.$ fun $\left.\left.y_{1} y_{2}\right)\right)$
$x: \Sigma y_{1} . \Sigma y_{2}$.LangSyntax $\left(\right.$ fun $\left.y_{1} y_{2}\right) Ł_{c}$ parseFunArg : $F($ LangSyntax $(f$ st $x))$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

$$
\Gamma t_{c} M \text { to } x: A \text { in } N: M \text { to } x: A \text { in } \underline{C}
$$

But then all comp. types would be singleton-like

- comp. types would contain exactly the terms we want to type!

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

$$
\Gamma t_{c} M \text { to } x: A \text { in } N: M \text { to } x: A \text { in } \underline{C}
$$

But then all comp. types would be singleton-like

- comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λ_{ML}, one could also try

$$
\frac{\Gamma \vdash M: T A \quad \Gamma, x: A \vdash N: T B}{\Gamma \vdash M \text { to } x: A \text { in } N: T(\Sigma x: A . B)}
$$

But what makes this a principled solution? Why is it correct?

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.
E.g., consider the stateful program (for some x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \operatorname{lookup}(\text { return 2, return 3) to } x: \text { Nat in } N
$$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.
E.g., consider the stateful program (for some x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \operatorname{lookup}(\text { return 2, return 3) to } x: \text { Nat in } N
$$

After looking up the bit, this program evaluates as either

$$
N[2 / x] \text { at type } \underline{C}[2 / x] \text { or } N[3 / x] \text { at type } \underline{C}[3 / x]
$$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.
E.g., consider the stateful program (for some x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \text { lookup (return 2, return 3) to } x: \text { Nat in } N
$$

After looking up the bit, this program evaluates as either

$$
N[2 / x] \text { at type } \underline{C}[2 / x] \text { or } N[3 / x] \text { at type } \underline{C}[3 / x]
$$

Idea: M denotes an element of the coproduct of algebras

$$
\underline{C}[2 / x]+\underline{C}[3 / x] \stackrel{\text { def }}{=} F(U(\underline{C}[2 / x])+U(\underline{C}[3 / x])) / \equiv
$$

Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

- and combine it with Option 1, i.e., restricting \underline{C} in seq. comp.
E.g., consider the stateful program (for some x : Nat $t_{\bar{c}} N: \underline{C}$)

$$
M \stackrel{\text { def }}{=} \text { lookup (return 2, return 3) to } x: \text { Nat in } N
$$

After looking up the bit, this program evaluates as either

$$
N[2 / x] \text { at type } \underline{C}[2 / x] \text { or } N[3 / x] \text { at type } \underline{C}[3 / x]
$$

Idea: M denotes an element of the coproduct of algebras

$$
\underline{C}[2 / x]+\underline{C}[3 / x] \stackrel{\text { def }}{=} F(U(\underline{C}[2 / x])+U(\underline{C}[3 / x])) / \equiv
$$

- actually, we use a Nat-indexed coproduct (i.e., $\Sigma x:$ Nat. \underline{C})

Putting these ideas together

(a core dependently-typed calculus with comp. effects)

A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

- general computational effects
- a clear distinction between
- values
- computations
- with a principled treatment of sequential composition
- restricting free variables in seq. composition
- based on coproducts of algebras
- with a natural denotational semantics, using standard techniques
- dep. types - comprehension categories
- comp. effects - adjunction models

A computational dep.-typed language

Value types: MLTT's types + thunks $+\ldots$
$A, B::=$ Nat $|1| \Pi x: A \cdot B|\Sigma x: A \cdot B| I d_{A}(V, W)|\cup \underline{C}| \ldots$

- $U \underline{C}$ is the type of thunked (i.e., suspended) computations

A computational dep.-typed language

Value types: MLTT's types + thunks $+\ldots$
$A, B::=$ Nat $|1| \Pi x: A \cdot B|\Sigma x: A \cdot B| I d_{A}(V, W)|U \underline{C}| \ldots$

- $U \underline{C}$ is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC's comp. types

$$
\underline{C}, \underline{D}::=F A|\Pi x: A \cdot \underline{C}| \Sigma x: A \cdot \underline{C}
$$

- $\Pi x: A . \underline{C}$ is the type of dependent effectful functions
- it generalises CBPV's and EEC's computational function type $A \rightarrow \underline{C}$ and product type $\underline{C} \times \underline{D}$
- $\Sigma x: A . \underline{C}$ is the generalisation of coproducts of algebras
- it generalises EEC's
computational tensor type $A \otimes \underline{C}$ and sum type $\underline{C}+\underline{D}$

A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using a judgment $\Gamma \vdash_{v} V$: A

A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using a judgment $\Gamma \vdash_{v} V$: A

Computation terms: dep.-typed version of CBPV/EEC c. terms

```
M,N ::= force V
            return V
            M to x:A in N
            \lambdax:A.M
            MV
            \V,M\rangle
```


A computational dep.-typed language

Value terms: MLTT's terms + thunks $+\ldots$

$$
V, W::=x \mid \text { zero }|\operatorname{succ} V| \ldots \mid \text { thunk } M \mid \ldots
$$

- equational theory based on MLTT with intensional id.-types
- value terms are typed using a judgment $\Gamma \vdash_{v} V$: A

Computation terms: dep.-typed version of CBPV/EEC c. terms

$M, N::$	force V
	return V
	M to $x: A$ in N
	$\lambda x: A . M$
	$M V$
	$\langle V, M\rangle$
M to $\langle x: A, z: \underline{C}\rangle$ in K	
	(comp. Σ intro.)
	(comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!

A computational dep.-typed language

Note: We need to define K in such a way that the intended evaluation order is preserved, e.g., as in

$$
\Gamma \vdash_{\bar{c}}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

A computational dep.-typed language

Note: We need to define K in such a way that the intended evaluation order is preserved, e.g., as in

$$
\Gamma t_{c}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

Homomorphism terms: dep.-typed version of EEC's linear terms

$$
\begin{aligned}
K, L::= & z \\
\mid & K \text { to } x: A \text { in } M \\
& \lambda x: A \cdot K \\
& K V \\
\mid & \langle V, K\rangle \\
& K \text { to }\langle x: A, z: \underline{C}\rangle \text { in } L
\end{aligned}
$$

(linear comp. vars.)

$$
\langle V, K\rangle \quad \text { (comp- } \sum \text { intro.) }
$$ (comp- Σ elim.)

Computation and homomorphism terms are typed using judgments

- $\Gamma t_{c} M$: \underline{C}
- $\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \quad$ (linear in z; comp. bound to z happens first)

A computational dep.-typed language

Note: We need to define K in such a way that the intended evaluation order is preserved, e.g., as in

$$
\Gamma t_{c}\langle V, M\rangle \text { to }\langle x: A, z: \underline{C}\rangle \text { in } K=K[V / x, M / z]: \underline{D}
$$

Homomorphism terms: dep.-typed version of EEC's linear terms

$$
\begin{aligned}
K, L::= & z \\
\mid & K \text { to } x: A \text { in } M \\
& \lambda x: A \cdot K \\
& K V \\
\mid & \langle V, K\rangle \\
& K \text { to }\langle x: A, z: \underline{C}\rangle \text { in } L
\end{aligned}
$$

(linear comp. vars.)

$$
\langle V, K\rangle \quad \text { (comp- } \Sigma \text { intro.) }
$$ (comp- Σ elim.)

Computation and homomorphism terms are typed using judgments

- $\Gamma t_{c} M$: \underline{C}
- $\Gamma \mid z: \underline{C} \hbar K: \underline{D} \quad$ (linear in $z ;$ comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms

A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:
$\frac{\Gamma \vdash_{v} V: A}{\Gamma t_{c} \operatorname{return} V: F A} \quad \frac{\Gamma \vdash_{c} M: F A \quad \Gamma \vdash \underline{C} \quad \Gamma, x: A t_{c} N: \underline{C}}{\Gamma t_{c} M \text { to } x: A \text { in } N: \underline{C}}$

$$
\frac{\Gamma \vdash \underline{C}}{\Gamma \mid z: \underline{C} \operatorname{tr}_{\mathrm{n}} z: \underline{C}}
$$

$$
\frac{\Gamma \hbar_{v} V: A \quad \Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D}[V / x]}{\Gamma \mid z: \underline{C} \hbar_{n}\langle V, K\rangle: \Sigma x: A \cdot \underline{D}}
$$

$$
\frac{\Gamma\left|z_{1}: \underline{C} \hbar_{\hbar} K: \Sigma x: A \cdot \underline{D}_{1} \quad \Gamma \vdash \underline{D}_{2} \quad \Gamma, x: A\right| z_{2}: \underline{D}_{1} \hbar_{\hbar} L: \underline{D}_{2}}{\Gamma \mid z_{1}: \underline{C} \vdash_{\hbar} K \text { to }\left\langle x: A, z_{2}: \underline{D}_{1}\right\rangle \text { in } L: \underline{D}_{2}}
$$

A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

$$
\frac{\Gamma \vdash_{c} M: F A \quad \frac{\Gamma, x: A \vdash_{c} N: \underline{C}(x)}{\Gamma, x: A t_{c}\langle x, N\rangle: \Sigma y: A \cdot \underline{C}(y)}}{\Gamma \vdash_{c} M \text { to } x: A \operatorname{in}\langle x, N\rangle: \Sigma y: A \cdot \underline{C}(y)}
$$

The seq. comp. rule for λ_{ML} is justified by the type isomorphism

$$
\ulcorner\vdash \Sigma x: A \cdot F(B) \cong F(\Sigma x: A \cdot B)
$$

Operations and equations

(primitives for programming with side-effects)

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\frac{\cdot \vdash I \quad x_{i}: I \vdash O \quad I \text { and } O \text { are both pure value types }}{\text { op }:\left(x_{i}: I\right) \longrightarrow O}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols mostly a convenience

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\frac{\cdot \vdash I \quad x_{i}: I \vdash O \quad I \text { and } O \text { are both pure value types }}{\text { op }:\left(x_{i}: I\right) \longrightarrow O}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols mostly a convenience

Algebraic operations:
$\Gamma \vdash_{v} V: I \quad \Gamma \vdash \underline{C} \quad \Gamma, x: O\left[V / x_{i}\right]$ 厄 $M: \underline{C}$

$$
\Gamma \vdash_{c} \circ p \frac{C}{V}(x . M): \underline{C}
$$

$$
\frac{\Gamma \vdash_{v} V: I}{\Gamma \hbar_{c} \operatorname{genop}_{V}: F\left(O\left[V / x_{i}\right]\right)}
$$

Algebraic operations and equations

Effect theories:

- we consider signatures of typed operation symbols

$$
\frac{\cdot \vdash I \quad x_{i}: I \vdash O \quad I \text { and } O \text { are both pure value types }}{\text { op }:\left(x_{i}: I\right) \longrightarrow O}
$$

- equipped with equations on derivable effect terms
- type-dependency in operation symbols mostly a convenience

Algebraic operations:

Generic effects:
$\Gamma \vdash_{\mathrm{v}} V: I \quad \Gamma \vdash \underline{C} \quad \Gamma, x: O\left[V / x_{i}\right] \upharpoonright_{\mathrm{c}} M: \underline{C}$

$$
\Gamma t_{c} \circ p \frac{C}{V}(x . M): \underline{C}
$$

$$
\frac{\Gamma \vdash_{v} V: I}{\Gamma \hbar_{c} \operatorname{genop}_{V}: F\left(O\left[V / x_{i}\right]\right)}
$$

Example: Global store with two locations (modeled as booleans)

$$
\begin{gathered}
\text { lookup }:\left(x_{i}: \text { Bool }\right) \longrightarrow\left(\text { if } x_{i} \text { then String else Nat }\right) \\
\text { update }:\left(x_{i}: \Sigma x: \text { Bool. }(\text { if } x \text { then String else Nat })\right) \longrightarrow 1
\end{gathered}
$$

What about handlers?

What about handlers?

We ensure that K's behave like homomorphisms via the rule

$$
\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{c} K\left[\operatorname{op}_{V} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op}_{V} \underline{D}(x \cdot K[M / z]): \underline{D}
$$

What about handlers?

We ensure that K's behave like homomorphisms via the rule

$$
\Gamma \mid z: \underline{C} \hbar_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma t_{c} K\left[\operatorname{op}_{V} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op}_{V} \underline{D}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \vdash_{c} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

What about handlers?

We ensure that K's behave like homomorphisms via the rule

$$
\Gamma|z: \underline{C}|_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{\bar{c}} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op} \frac{D}{V}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \hbar_{c} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's

What about handlers?

We ensure that K's behave like homomorphisms via the rule

$$
\Gamma \mid z: \underline{C} \vdash_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{c} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op} \frac{D}{V}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \vdash_{\bar{c}} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's
Q: So, could we simply add?
$\Gamma \mid z: \underline{C} \hbar_{h} K$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\text {op }}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{D}$

What about handlers?

We ensure that K's behave like homomorphisms via the rule

$$
\Gamma \mid z: \underline{C} \vdash_{\hbar} K: \underline{D} \quad \Longrightarrow \quad \Gamma \vdash_{c} K\left[\operatorname{op} \frac{C}{V}(x \cdot M) / z\right]=\operatorname{op} \frac{D}{V}(x \cdot K[M / z]): \underline{D}
$$

Recall: Plotkin-Pretnar presentation of handlers is given by:
$\Gamma \vdash_{\bar{c}} M$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $x: A$ in $M_{\text {ret }}: \underline{C}$

- semantically, $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ defines an algebra on $U \llbracket \underline{C} \rrbracket$
- and M handled \ldots is the unique homomorphism out of $F \llbracket A \rrbracket$

Note: We have homomorphisms in the language, namely, the K's
Q: So, could we simply add?
$\Gamma \mid z: \underline{C} t_{\mathrm{h}} K$ handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\text {op }}$ to $x: A$ in $M_{\text {ret }}: \underline{D}$
A: Unfortunately not - the algebra structure only at term level

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x_{1}: I, x_{2}: O\left[x_{1} / x_{i}\right] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\mathrm{op}}\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}\right\rangle}
$$

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about $V_{\text {op }}$'s omitted)
$\frac{\Gamma \vdash A \quad\left\{\Gamma, x_{1}: I, x_{2}: O\left[x_{1} / x_{i}\right] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O}}{\Gamma \vdash\left\langle A,\left\{\left(x_{1}, x_{2}\right) . V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow O\right\rangle}\right.}$
Introduction: force $\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle$

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x_{1}: I, x_{2}: O\left[x_{1} / x_{i}\right] \rightarrow A \vdash_{\mathrm{v}} V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \rightarrow 0}}{\Gamma \vdash\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\mathrm{op}}\right\}_{\mathrm{op}:\left(x_{i}: I\right) \rightarrow 0}\right)}
$$

Introduction: force $\left\langle A,\left\{\left\{\left(x_{1}, x_{2}\right) . V_{\text {op }}\right\}_{\text {op }}\right\rangle, V\right.$
Elimination: (comp. term version)
(definitional equational proof obligations about N omitted)

$$
\frac{\Gamma \vdash_{c} M:\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle \quad \Gamma, x: A \vdash_{\bar{c}} N: \underline{C}}{\Gamma r_{c} \operatorname{run} M \text { as } x \operatorname{in} N: \underline{C}}
$$

One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x_{1}: I, x_{2}: O\left[x_{1} / x_{i}\right] \rightarrow A \vdash V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \rightarrow 0}}{\Gamma \vdash\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \rightarrow 0\right\rangle}\right.}
$$

Introduction: force $\left\langle A,\left\{\left\{x_{1}, x_{2}\right) . V_{\text {op }}\right\}_{\text {op }}\right\rangle, V$
Elimination: (comp. term version)
(definitional equational proof obligations about N omitted)

$$
\frac{\Gamma \vdash_{c} M:\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle \quad \Gamma, x: A \vdash_{c} N: \underline{C}}{\Gamma \vdash_{\bar{c}} \operatorname{run} M \text { as } x \operatorname{in} N: \underline{C}}
$$

Equations:

- $U\left\langle A,\left\{(x, y) . V_{\text {op }}\right\}_{\text {op }}\right\rangle=A$
- $\operatorname{op}_{V}^{\left\langle A,\left\{\left(x_{1}, x_{2}\right) \cdot V_{\text {op }}\right\}_{\text {op }}\right\rangle}(x \cdot M)=$ force $\left(V_{\text {op }}\left[V / x_{1}, \lambda x\right.\right.$.thunk $\left.\left.M / x_{2}\right]\right)$
- $(\eta$ - and β-equations for intro.-elim. interaction)

One way forward with handlers

User-defined algebra type:
(equational proof obligations about $V_{\text {op }}$'s omitted)

$$
\frac{\Gamma \vdash A \quad\left\{\Gamma, x: I, y: O[x / x i] \rightarrow A \vdash_{\mathrm{v}} V_{\mathrm{op}}: A\right\}_{\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0}}{\Gamma \vdash\left\langle A,\left\{(x, y) . V_{\mathrm{op}}\right\}_{\left.\mathrm{op}:\left(x_{i}: I\right) \longrightarrow 0\right\rangle}\right.}
$$

Encoding Plotkin-Pretnar handlers:

M handled with $\left\{\mathrm{op}_{x}(y) \mapsto M_{\mathrm{op}}\right\}_{\mathrm{op}}$ to $\mathrm{x}: A$ in $M_{\text {ret }}: \underline{C}$

$$
\stackrel{\text { def }}{=}
$$

$\operatorname{force}_{\underline{C}}(\operatorname{thunk}\left(M\right.$ to $x: A$ in $\left.\operatorname{force}_{\langle U \underline{C}, \ldots \operatorname{thnk}}\left(M_{\text {op }}\right) \ldots\right\rangle(\underbrace{\left.\operatorname{thunk}^{M_{\text {ret }}}\right)}_{: U \underline{C}}))$

$$
:\left\langle U \underline{C}, \ldots \text { thunk }\left(M_{o p}\right) \ldots\right\rangle
$$

Categorical semantics

(fibrations and adjunctions)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models
given by:

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: i) a split closed comprehension category \mathcal{P}

- following Streicher and Hoffmann, we have a partial interpretation function 【-】on raw syntax, that maps (if defined):
- a context Γ to and object $\llbracket \Gamma \rrbracket$ in \mathcal{B}
- a context Γ and a value type A to an object $\llbracket \Gamma ; A \rrbracket$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$
- a context Γ and a value term V to $\llbracket \Gamma ; V \rrbracket: 1_{\llbracket \Gamma \rrbracket} \rightarrow X$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: i) a split closed comprehension category \mathcal{P}

- the display maps $\pi_{A}=\mathcal{P}(A):\{A\} \longrightarrow p(A)$ in \mathcal{B}
- induce the weakening functors $\pi_{A}^{*}: \mathcal{V}_{p(A)} \longrightarrow \mathcal{V}_{\{A\}}$
- and the value Σ - and Π-types are interpreted as adjoints

$$
\Sigma_{A} \dashv \pi_{A}^{*} \dashv \Pi_{A}
$$

(Σ_{A} is also required to be strong, i.e., support dep. elimination)

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: ii) a split fibration q and a split fib. adj. $F \dashv U$

- we extend $\llbracket-\rrbracket$ so that it maps (if defined):
- a ctx. Г and a comp. type \underline{C} to an object $\llbracket \Gamma ; \underline{C} \rrbracket$ in $\mathcal{C}_{\llbracket \Gamma \rrbracket}$
- a ctx. Γ and a comp. term M to $\llbracket \Gamma ; M \rrbracket: 1_{\llbracket \Gamma \rrbracket} \rightarrow U(Z)$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$
- a ctx. Г, a comp. type \underline{C} and a hom. term K to

$$
\llbracket \Gamma ; \subset ; K \rrbracket: \llbracket \Gamma ; \subset \rrbracket \rightarrow Z \text { in } \mathcal{C}_{\llbracket \Gamma \rrbracket}
$$

Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

- a sound and complete class of models given by: ii) a split fibration q and a split fib. adj. $F \dashv U$

- the display maps $\pi_{A}=\mathcal{P}(A):\{A\} \longrightarrow p(A)$ in \mathcal{B}
- induce the weakening functors $\pi_{A}^{*}: \mathcal{C}_{p(A)} \longrightarrow \mathcal{C}_{\{A\}}$
- and the comp. Σ - and Π-types are interpreted again as adjoints

$$
\Sigma_{A} \dashv \pi_{A}^{*} \dashv \Pi_{A}
$$

Examples of fibred adjunction models

- for a split closed comprehension cat. $\mathcal{P}: \mathcal{V} \longrightarrow \mathcal{B}^{\rightarrow}$, we have

$$
\operatorname{Id}_{\mathcal{V}} \dashv \operatorname{Id}_{\mathcal{V}}: \mathcal{V} \longrightarrow \mathcal{V}
$$

- for a model of EEC (\mathcal{V} is CCC, \mathcal{C} is \mathcal{V}-enriched, \mathcal{V}-enr. adj., etc.)

$$
F_{\mathrm{EEC}} \dashv U_{\mathrm{EEC}}: s(\mathcal{V}, \mathcal{C}) \longrightarrow \mathrm{s}(\mathcal{V})
$$

Examples of fibred adjunction models

- for $\mathcal{P}_{\text {fam }}: \operatorname{Fam}($ Set $) \longrightarrow$ Set $^{\rightarrow}$ and $F \dashv U: \mathcal{C} \longrightarrow$ Set, when \mathcal{C} has set-indexed products and set-indexed coproducts, we have

$$
\widehat{F} \dashv \widehat{U}: \operatorname{Fam}(\mathcal{C}) \longrightarrow \operatorname{Fam}(\text { Set })
$$

Examples of fibred adjunction models

- for $\mathcal{P}_{\text {fam }}: \operatorname{Fam}(\mathrm{Set}) \longrightarrow$ Set $^{\rightarrow}$ and $F \dashv U: \mathcal{C} \longrightarrow$ Set, when \mathcal{C} has set-indexed products and set-indexed coproducts, we have

$$
\widehat{F} \dashv \widehat{U}: \operatorname{Fam}(\mathcal{C}) \longrightarrow \operatorname{Fam}(\text { Set })
$$

- for any monad $T:$ Set \longrightarrow Set and $\mathcal{P}_{\text {fam }}:$ Fam(Set) \longrightarrow Set $^{\rightarrow}$

$$
\widehat{F^{T}} \dashv \widehat{U^{T}}: \operatorname{Fam}\left(\mathrm{Set}^{T}\right) \longrightarrow \operatorname{Fam}(\mathrm{Set})
$$

Examples of fibred adjunction models

- for $\mathcal{P}_{\text {fam }}: \operatorname{Fam}(\mathrm{Set}) \longrightarrow$ Set $^{\rightarrow}$ and $F \dashv U: \mathcal{C} \longrightarrow$ Set, when \mathcal{C} has set-indexed products and set-indexed coproducts, we have

$$
\widehat{F} \dashv \widehat{U}: \operatorname{Fam}(\mathcal{C}) \longrightarrow \operatorname{Fam}(\text { Set })
$$

- for any monad $T:$ Set \longrightarrow Set and $\mathcal{P}_{\text {fam }}:$ Fam(Set) \longrightarrow Set $^{\rightarrow}$

$$
\widehat{F^{T}} \dashv \widehat{U^{T}}: \operatorname{Fam}\left(\operatorname{Set}^{T}\right) \longrightarrow \operatorname{Fam}(\operatorname{Set})
$$

- for the continuations monad $R^{R^{(-)}}:$Set \longrightarrow Set, we have

$$
\widehat{R^{(-)}} \dashv \widehat{R^{(-)}}: \operatorname{Fam}\left(\text { Set }^{\mathrm{op}}\right) \longrightarrow \operatorname{Fam}(\text { Set })
$$

and analogously for the state monad $(S \times(-))^{S}$

Examples of fibred adjunction models

Another example:

- for a $\mathcal{C P O}$-enriched monad $T: \mathcal{C P O} \longrightarrow \mathcal{C P O}$ with a least algebraic operation $\Omega: 0$ and reflexive coequalizers in $\mathcal{C P O} \mathcal{O}^{\top}$

$$
\widehat{F^{T}} \dashv \widehat{U^{T}}: \operatorname{CFam}\left(\mathcal{C P} \mathcal{O}^{T}\right) \longrightarrow \operatorname{CFam}(\mathcal{C P O})
$$

where $\operatorname{CFam}(\mathcal{C P O})$ is the cat. of continuous families

$$
\left((X, \sqsubseteq x), A:(X, \sqsubseteq x) \longrightarrow \mathcal{C P} \mathcal{O}^{\mathrm{EP}}\right)
$$

- this allows us to treat general recursion as a comp. effect by

$$
\frac{\Gamma, x: U \underline{C} t_{\bar{c}} M: \underline{C}}{\Gamma \vdash_{\bar{c}} \mu x: U \underline{C} \cdot M: \underline{C}}
$$

- but have to restrict A in $\operatorname{ld}_{A}(V, W)$ to be discrete to define

$$
\operatorname{Id}_{(X, A)} \stackrel{\text { def }}{=}\left(\left\{\pi_{(X, A)}^{*}(X, A)\right\},\left\langle x, a, a^{\prime}\right\rangle \mapsto \coprod_{\left\{\star \mid a=a^{\prime}\right\}} 1\right)
$$

Conclusions

A dependently-typed computational language with

- clear distinction between values and computations
- systematic treatment of seq. composition (comp. Σ-types)
- algebraic effects and handlers
- natural denotational semantics, using standard math. tools

Ongoing work

- integrating dependent- and effect-typing
- e.g., fibred parametrised adjunctions for a principled account of resource-dependent effects in Idris

$$
\operatorname{EffM} \varepsilon_{1}\left((x: A) \cdot \varepsilon_{2}(x)\right)=U_{\varepsilon_{1}}\left(\Sigma x: A \cdot F_{\varepsilon_{2}(x)}(1)\right)
$$

- homomorphic type-dependency on effectful computations

Conclusions

A dependently-typed computational language with

- clear distinction between values and computations
- systematic treatment of seq. composition (comp. Σ-types)
- algebraic effects and handlers
- natural denotational semantics, using standard math. tools

Ongoing work

- integrating dependent- and effect-typing
- e.g., fibred parametrised adjunctions for a principled account of resource-dependent effects in Idris

$$
\operatorname{EffM} \varepsilon_{1}\left((x: A) \cdot \varepsilon_{2}(x)\right)=U_{\varepsilon_{1}}\left(\Sigma x: A \cdot F_{\varepsilon_{2}(x)}(1)\right)
$$

- homomorphic type-dependency on effectful computations Thank you for listening!

