Dependent Types and
Fibred Computational Effects

Danel Ahman!

(joint work with Neil Ghani? and Gordon Plotkin®)

LLFCS, University of Edinburgh
2MSP Group, University of Strathclyde

April 4, 2016



Outline

Language design principles for combining

e dependent types (M, X, 1da(V, W), ...
e computational effects (state, 1/0O, probability, recursion, ...
Our goal

e have a mathematically natural story
e use established math. techniques

e cover a wide range of computational effects

This work was guided by two problems

o effectful programs in types

e assigning types to effectful programs



Effectful programs in types

(type-dependency in the presence of effects)
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Effectful programs in types

Let's assume that we have a dependent type A(x), e.g.:

def

x:Nat+ A(x) = 1if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x] if M is an effectful program?
e e.g., if Mis receive(y.N)

Al: In this work we say no
e types should only depend on static information
e e.g., how would one compute Afreceive(y.M)/x] statically?

e we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes
e type-dependency (z:C + A(z)) becomes “homomorphic”
e lifting effect operations from terms to types, e.g., (receive)(y. A)
e similarities with refinement types and op. modalities [A.,P."15]
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Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

e value typesTH A (MLTT + thunks + ...)
e computation types [ - C (dep. version of CBPV/EEC)
e where [ contains only value variables x1: A1, ..., xp:Ap

Note: Some of the other options are Ay and FGCBV

e but basing the work on CBPV/EEC gives a more general story
e especially for treating of sequential composition

e also for systematically integrating dependent- and effect-typing
(ongoing work)



Assigning types to effectful programs

(i.e., typing sequential composition)



Assigning types to effectful programs

The problem: The standard typing rule for seq. composition

FreM:FA MNx:AN:C
e Mtox:Ain N: C

is not correct any more because x can appear free in the type
C

in the conclusion
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Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C, i.e.,

l'eM:FA N=C MNx:AeN:C
leMtox:Ain N: C

But sometimes it is necessary for C to depend on x!
e e.g., even to write effectful programs modularly
e take monadic parsing of well-typed syntax
and consider writing a parser for function application

e it is natural to modularly decompose the code into
- fc parseFun : F (Xy;:LangType.Xys:LangType.LangSyntax(fun y; y2))

x:Xy1.Xys.LangSyntax(fun y; y») fc parseFunArg : F (LangSyntax(fst x))
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Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

leEMtox:Ain N: M to x:Ain C

But then all comp. types would be singleton-like

e comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage Ay, one could also try

r-M:TA Mx:AEN:TB
NEMtox:Ain N: T (Xx:AB)

But what makes this a principled solution? Why is it correct?
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Assigning types to effectful programs ctd.
Aim: To fix the typing rule of sequential composition
Option 4: We draw inspiration from algebraic effects

e and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x:Natf N : C)

M = lookup(return2, return3) to x:Nat in N

After looking up the bit, this program evaluates as either

N[2/x] at type C[2/x] or N[3/x] at type C[3/x]

Idea: M denotes an element of the coproduct of algebras
CR/+ M = F(U(C) + U (C)),

e actually, we use a Nat-indexed coproduct (i.e., Xx:Nat. C)



Putting these ideas together

(a core dependently-typed calculus with comp. effects)



A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

e general computational effects
e a clear distinction between

e values

e computations

e with a principled treatment of sequential composition
e restricting free variables in seq. composition
e based on coproducts of algebras

e with a natural denotational semantics, using standard techniques

e dep. types — comprehension categories

e comp. effects — adjunction models



A computational dep.-typed language
Value types: MLTT's types + thunks + ...
AB = Nat | 1| Nx:AB | x:AB | lda(V,W) | UC | ...

e U C is the type of thunked (i.e., suspended) computations



A computational dep.-typed language

Value types: MLTT's types + thunks + ...
AB = Nat | 1| Nx:AB | x:AB | lda(V,W) | UC | ...

e U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC's comp. types
C,D:=FA | Nx:AC | £x:AC

e [x:A.C is the type of dependent effectful functions

e it generalises CBPV's and EEC's
computational function type A — C and product type C x D

e Y x:A.C is the generalisation of coproducts of algebras

e it generalises EEC's
computational tensor type A® C and sum type C+ D



A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using a judgment 'k V : A



A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using a judgment 'k V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms
M,N ::= force V

| returnV

| Mtox:Ain N

| Ax:AM

| MV

| (V,M) (comp. X intro.)
| Mto (x:Az:C) in K (comp. X elim.)



A computational dep.-typed language

Value terms: MLTT's terms + thunks + ...

V.W = x| zero | succV | ... | thunk M | ...

e equational theory based on MLTT with intensional id.-types
e value terms are typed using a judgment 'k V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms
M,N ::= force V

| returnV

| Mtox:Ain N

| Ax:AM

| MV

| (V,M) (comp. X intro.)
| Mto (x:Az:C) in K (comp. X elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!
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A computational dep.-typed language

Note: We need to define K in such a way that the intended
evaluation order is preserved, e.g., as in

[k (V,M) to (x:A,z:C) in K = K[V/x,M/z] : D

Homomorphism terms: dep.-typed version of EEC's linear terms

K,L = =z (linear comp. vars.)
| Ktox:Ain M
| Ax:AK
| KV
| (V,K) (comp-X intro.)
| Kto (x:Az:C)in L (comp-X elim.)

Computation and homomorphism terms are typed using judgments
e [EM:C

e Nz:CkK:D (linear in z; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms



A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Nl V:A Flr’eM:FA r=C MNx:AN:C
e returnV :FA FleMtox:Ain N: C
I L
MNz:Ckz:C

s v:A MNz:Ck K:D[V/x]
MNz:Ck(V,K): £x:A.D

MNz:Chk K:EZx:A.Dq =D, Mx:A|lz:Dyt L:Dy
MNz:Clk K to (x:A,z:Dq) in L: D,




A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Mx:Ak N: C(x)
reEM:FA x:Ak (x,N):Xy:A.C(y)
e Mtox:Ain (x,N):Xy:A.C(y)

The seq. comp. rule for Ay is justified by the type isomorphism

EXx:AF(B)= F(Xx:A.B)



Operations and equations
(primitives for programming with side-effects)
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Effect theories:
e we consider signatures of typed operation symbols

-H xi:l O I and O are both pure value types
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e type-dependency in operation symbols mostly a convenience
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Algebraic operations and equations

Effect theories:
e we consider signatures of typed operation symbols

-H xi:l O I and O are both pure value types
op:(xi:l)— O

e equipped with equations on derivable effect terms

e type-dependency in operation symbols mostly a convenience

Algebraic operations: Generic effects:
NrNsVv:l TEC Ix:0OV/x]kM:C FeV-
Mk op%(x.l\/l) : C [t genop,, : F (O[V/xi])

Example: Global store with two locations (modeled as booleans)

lookup : (xj:Bool) — (if x; then String else Nat)
update : (x;:Xx:Bool.(if x then String else Nat)) — 1
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What about handlers?

We ensure that K's behave like homomorphisms via the rule

Nz:CHK:D = FlfK[op%(x.M)/z]:op%(x.K[l\/l/z]):Q

Recall: Plotkin-Pretnar presentation of handlers is given by:
[t M handled with {op,(y) — Mop}op to x:A in M : C

e semantically, {op,(y) = Mop}op defines an algebra on U[C]
e and M handled ... is the unique homomorphism out of F[A]

Note: We have homomorphisms in the language, namely, the K's

Q: So, could we simply add?
[|z:Ck K handled with {op,(y) — Mop}op to x: A in M,y : D

A: Unfortunately not — the algebra structure only at term level
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One way forward with handlers
User-defined algebra types:
(definitional equational proof obligations about V;,'s omitted)
r=A {Fxi:lx: Olxa/x] — Ak Vop : A}op:(x,-:l)—>0
rE <A7 {(leX2)'V0p}op:(x,-:l)—>0>

Introduction: force (a (x,x).Vop}op) V (where V : A)

Elimination: (comp. term version)
(definitional equational proof obligations about N omitted)
Me M (A {(x1,x2)-Vop }op) Mx:Ak N:C
[frun Mas xin N: C

Equations:
° U<Aa {(Xa)/)-vop}op> =A
o op{ il Verdool (o 11y = force (Vop[V/x1, Ax.thunk M/x;])

e (7- and f3-equations for intro.-elim. interaction)



One way forward with handlers

User-defined algebra type:
(equational proof obligations about V;,'s omitted)
r-A {Fx 1y Olx/xi] = Al Vop : Alop:(x:1)—s0
M (A, {(X7y)‘vop}0p:(x,-:l)*>0>

Encoding Plotkin-Pretnar handlers:

M handled with {op,(y) — Mop}op to x: A in My : C

def

forcec (thunk (M to x:A in forceiyc, . thunk (Mop)...) (thunk Mret)) )
_ )
:UC

(UC,...thunk (Mop)...)

g

:UC



Categorical semantics
(fibrations and adjunctions)
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Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

e a sound and complete class of models

given by: i) a split closed comprehension category P

Br—L2 vy

p<4 ’1> {-}
cod
B

following Streicher and Hoffmann, we have a partial interpretation
function [—] on raw syntax, that maps (if defined):

a context I' to and object [[] in B

a context I and a value type A to an object [I'; A] in Vi

a context I and a value term V to [I'; V] : 1jrp — X in Vipj



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models

given by: i) a split closed comprehension category P

B —"

p< ’1> {-}
cod
B

e the display maps m4 = P(A) : {A} — p(A) in B

e induce the weakening functors 7 : Vy4) — Via}

e and the value ¥- and [-types are interpreted as adjoints
Yadmn M4

(X4 is also required to be strong, i.e., support dep. elimination)



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models

given by: ii) a split fibration g and a split fib. adj. F 4 U

/\
B> ~—" y 1 c
\—/
p<4 ’1){} v
cod

q

we extend [—] so that it maps (if defined):

a ctx. [ and a comp. type C to an object [I; C] in Cyry
e actx. I'and a comp. term M to [[; M] : 1jrp — U(Z) in Vi

actx. I, a comp. type C and a hom. term K to
[[r;g; K]] : [[I—,Q]] — Zin C[[r}]



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models
e a sound and complete class of models
given by: ii) a split fibration g and a split fib. adj. F 4 U
F

P /J_\

B ~———V ¢
\_/
P C ’1> {-} v
cod
B q
e the display maps m4 = P(A) : {A} — p(A) in B
e induce the weakening functors 7 : Cpa) — Cay

e and the comp. ¥- and [l-types are interpreted again as adjoints

Yadmn M4



Examples of fibred adjunction models
e for a split closed comprehension cat. P :V — B, we have
Idy 4ldy : VYV —V
e for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)
Feec 4 Ugec : s(V,C) — s(V)
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set-indexed products and set-indexed coproducts, we have
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Examples of fibred adjunction models

e for Py : Fam(Set) — Set™ and F 4 U : C — Set, when C has
set-indexed products and set-indexed coproducts, we have

F4U: Fam(C) — Fam(Set)
e for any monad T : Set —» Set and Pgym : Fam(Set) — Set™
FT 40T Fam(Set”) — Fam(Set)
e for the continuations monad RR™ : Set — Set, we have

RO 4 RO . Fam(Set®?) — Fam(Set)
and analogously for the state monad (S x (—))°



Examples of fibred adjunction models

Another example:

e for a CPO-enriched monad T : CPO — CPO with a least
algebraic operation Q : 0 and reflexive coequalizers in CPOT

FT 4 UT : CFam(CPOT) — CFam(CPO)
where CFam(CPQO) is the cat. of continuous families

((X, Cx), A: (X,CEx) — CP(’)EP>

e this allows us to treat general recursion as a comp. effect by

Mx:UCk M:C
MNe px:UC.M: C

e but have to restrict A in Ida(V, W) to be discrete to define

({W{X,A)(X7 A)}7 <X7 4, a/> = H{*\a:a’} l)

def

ld(x,a) =



Conclusions

A dependently-typed computational language with
e clear distinction between values and computations
e systematic treatment of seq. composition (comp. X-types)
e algebraic effects and handlers
e natural denotational semantics, using standard math. tools
Ongoing work

e integrating dependent- and effect-typing

e e.g., fibred parametrised adjunctions for a principled account of
resource-dependent effects in Idris

EffM ¢ ((XZA).EQ(X)) = U., (ZX:A.FEZ(X)(I))

e homomorphic type-dependency on effectful computations



Conclusions

A dependently-typed computational language with
e clear distinction between values and computations
e systematic treatment of seq. composition (comp. X-types)
e algebraic effects and handlers
e natural denotational semantics, using standard math. tools
Ongoing work

e integrating dependent- and effect-typing

e e.g., fibred parametrised adjunctions for a principled account of
resource-dependent effects in Idris

EffM e, ((XZA).EQ(X)) = U., (ZX:A.FEZ(X)(I))
e homomorphic type-dependency on effectful computations

Thank you for listening!



