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Outline

Language design principles for combining

• dependent types (Π,Σ, IdA(V ,W ), ...)

• computational effects (state, I/O, probability, recursion, ...)

Our goal

• have a mathematically natural story

• use established math. techniques

• cover a wide range of computational effects

This work was guided by two problems

• effectful programs in types

• assigning types to effectful programs



Effectful programs in types
(type-dependency in the presence of effects)



Effectful programs in types

Let’s assume that we have a dependent type A(x), e.g.:

x :Nat ` A(x)
def
= if (x mod 2 == 0) then String else Char

Q: Should we allow A[M/x ] if M is an effectful program?

• e.g., if M is receive(y .N)

A1: In this work we say no

• types should only depend on static information

• e.g., how would one compute A[receive(y .M)/x ] statically?

• we recover dependency on effectful computations via thunks

A2: In a separate line of work, we are also looking at yes

• type-dependency ( z :C ` A(z) ) becomes “homomorphic”

• lifting effect operations from terms to types, e.g., 〈receive〉(y .A)

• similarities with refinement types and op. modalities [A.,P.’15]
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Effectful programs in types ctd.

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. version of CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Note: Some of the other options are λML and FGCBV

• but basing the work on CBPV/EEC gives a more general story

• especially for treating of sequential composition

• also for systematically integrating dependent- and effect-typing
(ongoing work)
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Assigning types to effectful programs
(i.e., typing sequential composition)



Assigning types to effectful programs

The problem: The standard typing rule for seq. composition

Γ c̀ M : F A Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

is not correct any more because x can appear free in the type

C

in the conclusion



Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C , i.e.,

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But sometimes it is necessary for C to depend on x!

• e.g., even to write effectful programs modularly

• take monadic parsing of well-typed syntax

and consider writing a parser for function application

• it is natural to modularly decompose the code into

· c̀ parseFun : F (Σy1 :LangType.Σy2 :LangType.LangSyntax(fun y1 y2))

x :Σy1.Σy2.LangSyntax(fun y1 y2) c̀ parseFunArg : F (LangSyntax(fst x))
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Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?



Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?



Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But then all comp. types would be singleton-like

• comp. types would contain exactly the terms we want to type!

Option 3: In the monadic metalanguage λML, one could also try

Γ ` M : T A Γ, x :A ` N : T B

Γ ` M to x :A in N : T (Σx : A.B)

But what makes this a principled solution? Why is it correct?



Assigning types to effectful programs ctd.

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with Option 1, i.e., restricting C in seq. comp.

E.g., consider the stateful program (for some x :Nat c̀ N : C )

M
def
= lookup (return 2, return 3) to x :Nat in N

After looking up the bit, this program evaluates as either

N[2/x ] at type C [2/x ] or N[3/x ] at type C [3/x ]

Idea: M denotes an element of the coproduct of algebras

C [2/x ] + C [3/x ]
def
= F

(
U
(
C [2/x ]

)
+ U

(
C [3/x ]

))/
≡

• actually, we use a Nat-indexed coproduct (i.e., Σx :Nat.C )
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Putting these ideas together
(a core dependently-typed calculus with comp. effects)



A computational dep.-typed language

Recall: We aim to define a dependently-typed language with

• general computational effects

• a clear distinction between

• values

• computations

• with a principled treatment of sequential composition

• restricting free variables in seq. composition

• based on coproducts of algebras

• with a natural denotational semantics, using standard techniques

• dep. types — comprehension categories

• comp. effects — adjunction models



A computational dep.-typed language

Value types: MLTT’s types + thunks + . . .

A,B ::= Nat | 1 | Πx :A.B | Σx :A.B | IdA(V ,W ) | U C | . . .

• U C is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Πx :A.C | Σx :A.C

• Πx :A.C is the type of dependent effectful functions

• it generalises CBPV’s and EEC’s
computational function type A→ C and product type C × D

• Σx :A.C is the generalisation of coproducts of algebras

• it generalises EEC’s
computational tensor type A⊗ C and sum type C + D
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A computational dep.-typed language

Value terms: MLTT’s terms + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on MLTT with intensional id.-types

• value terms are typed using a judgment Γ v̀ V : A

Computation terms: dep.-typed version of CBPV/EEC c. terms

M,N ::= force V
| returnV
| M to x :A in N
| λx :A.M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: These val. and comp. terms alone do not suffice, as in EEC!
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A computational dep.-typed language

Note: We need to define K in such a way that the intended
evaluation order is preserved, e.g., as in

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z ] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λx :A.K
| KV
| 〈V ,K 〉 (comp-Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp-Σ elim.)

Computation and homomorphism terms are typed using judgments

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)

Note: Formal presentation has more type-annotations on terms
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A computational dep.-typed language

Typing rules: Dep.-typed versions of CBPV and EEC, e.g.:

Γ v̀ V : A
Γ c̀ returnV : F A

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

. . .

Γ ` C

Γ | z :C h̀ z : C

. . .

Γ v̀ V : A Γ | z :C h̀ K : D[V /x ]

Γ | z :C h̀ 〈V ,K 〉 : Σx :A.D

Γ | z1 :C h̀ K : Σx :A.D1 Γ ` D2 Γ, x :A | z2 :D1 h̀ L : D2

Γ | z1 :C h̀ K to 〈x :A, z2 :D1〉 in L : D2



A computational dep.-typed language

We can then account for type-dependency in seq. comp. by

Γ c̀ M : F A

Γ, x :A c̀ N : C (x)

Γ, x :A c̀ 〈x ,N〉 : Σy :A.C (y)

Γ c̀ M to x :A in 〈x ,N〉 : Σy :A.C (y)

The seq. comp. rule for λML is justified by the type isomorphism

Γ ` Σx :A.F (B) ∼= F (Σx :A.B)



Operations and equations
(primitives for programming with side-effects)



Algebraic operations and equations
Effect theories:
• we consider signatures of typed operation symbols

· ` I xi : I ` O I and O are both pure value types

op : (xi : I ) −→ O

• equipped with equations on derivable effect terms

• type-dependency in operation symbols mostly a convenience

Algebraic operations: Generic effects:

Γ v̀ V : I Γ ` C Γ, x :O[V /xi ] c̀ M : C

Γ c̀ op
C
V (x .M) : C

Γ v̀ V : I
Γ c̀ genopV : F (O[V /xi ])

Example: Global store with two locations (modeled as booleans)

lookup : (xi :Bool) −→ (if xi then String else Nat)

update :
(
xi :Σx :Bool.(if x then String else Nat)

)
−→ 1
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)
−→ 1



What about handlers?

We ensure that K ’s behave like homomorphisms via the rule

Γ | z :C h̀ K : D =⇒ Γ c̀ K [op
C
V (x .M)/z ] = op

D
V

(
x .K [M/z ]

)
: D

Recall: Plotkin-Pretnar presentation of handlers is given by:

Γ c̀ M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

• semantically, {opx(y) 7→ Mop}op defines an algebra on UJCK
• and M handled . . . is the unique homomorphism out of F JAK

Note: We have homomorphisms in the language, namely, the K ’s

Q: So, could we simply add?

Γ | z :C h̀ K handled with {opx(y) 7→ Mop}op to x :A in Mret : D

A: Unfortunately not — the algebra structure only at term level
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One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I )−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)



One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I )−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)



One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I )−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)



One way forward with handlers

User-defined algebra types:
(definitional equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x1 : I , x2 : O[x1/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x1, x2).Vop}op:(xi :I )−→O〉

Introduction: force 〈A,{(x1,x2).Vop}op〉V (where V : A)

Elimination: (comp. term version)

(definitional equational proof obligations about N omitted)

Γ c̀ M : 〈A, {(x1, x2).Vop}op〉 Γ, x :A c̀ N : C

Γ c̀ run M as x in N : C

Equations:

• U〈A, {(x , y).Vop}op〉 = A

• op
〈A,{(x1,x2).Vop}op〉
V (x .M) = force (Vop[V /x1, λx .thunkM/x2])

• (η- and β-equations for intro.-elim. interaction)



One way forward with handlers

User-defined algebra type:

(equational proof obligations about Vop’s omitted)

Γ ` A {Γ, x : I , y : O[x/xi ]→ A v̀ Vop : A}op:(xi :I )−→O

Γ ` 〈A, {(x , y).Vop}op:(xi :I )−→O〉

Encoding Plotkin-Pretnar handlers:

M handled with {opx(y) 7→ Mop}op to x :A in Mret : C

def
=

forceC

(
thunk

(
M to x :A in force〈UC ,...thunk (Mop)...〉 (thunkMret)︸ ︷︷ ︸

:UC︸ ︷︷ ︸
:〈UC ,...thunk (Mop)...〉

)

︸ ︷︷ ︸
:UC

)



Categorical semantics
(fibrations and adjunctions)



Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• following Streicher and Hoffmann, we have a partial interpretation
function J−K on raw syntax, that maps (if defined):

• a context Γ to and object JΓK in B

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK → X in VJΓK
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Categorical semantics

Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: i) a split closed comprehension category P

B→

cod --

VPoo

p a

!!

{−}a

}}

⊥ C

B

1

OO

• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Vp(A) −→ V{A}
• and the value Σ- and Π-types are interpreted as adjoints

ΣA a π∗A a ΠA

(ΣA is also required to be strong, i.e., support dep. elimination)
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Using fibred cat. theory, we define fibred adjunction models

• a sound and complete class of models

given by: ii) a split fibration q and a split fib. adj. F a U

B→

cod --

VPoo

p a
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{−}a

}}

F

**⊥ C

qnn

U

jj

B

1

OO

• we extend J−K so that it maps (if defined):

• a ctx. Γ and a comp. type C to an object JΓ;CK in CJΓK

• a ctx. Γ and a comp. term M to JΓ;MK : 1JΓK → U(Z ) in VJΓK

• a ctx. Γ, a comp. type C and a hom. term K to
JΓ;C ;KK : JΓ;CK→ Z in CJΓK
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• a sound and complete class of models
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• the display maps πA = P(A) : {A} −→ p(A) in B

• induce the weakening functors π∗A : Cp(A) −→ C{A}
• and the comp. Σ- and Π-types are interpreted again as adjoints

ΣA a π∗A a ΠA



Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have

F̂ a Û : Fam(C) −→ Fam(Set)

• for any monad T : Set −→ Set and Pfam : Fam(Set) −→ Set→

F̂T a ÛT : Fam(SetT ) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S
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F̂T a ÛT : Fam(SetT ) −→ Fam(Set)

• for the continuations monad RR(−)
: Set −→ Set, we have

R̂(−) a R̂(−) : Fam(Setop) −→ Fam(Set)

and analogously for the state monad (S × (−))S



Examples of fibred adjunction models
• for a split closed comprehension cat. P : V −→ B→, we have

IdV a IdV : V −→ V

• for a model of EEC (V is CCC, C is V-enriched, V-enr. adj., etc.)

FEEC a UEEC : s(V, C) −→ s(V)

• for Pfam : Fam(Set) −→ Set→ and F a U : C −→ Set, when C has
set-indexed products and set-indexed coproducts, we have
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Examples of fibred adjunction models

Another example:

• for a CPO-enriched monad T : CPO −→ CPO with a least
algebraic operation Ω : 0 and reflexive coequalizers in CPOT

F̂T a ÛT : CFam(CPOT ) −→ CFam(CPO)

where CFam(CPO) is the cat. of continuous families(
(X ,vX ) , A : (X ,vX ) −→ CPOEP

)
• this allows us to treat general recursion as a comp. effect by

Γ, x :UC c̀ M : C

Γ c̀ µx :UC .M : C

• but have to restrict A in IdA(V ,W ) to be discrete to define

Id(X ,A)
def
=
(
{π∗(X ,A)(X ,A)}, 〈x , a, a′〉 7→

∐
{? | a=a′} 1

)



Conclusions

A dependently-typed computational language with

• clear distinction between values and computations

• systematic treatment of seq. composition (comp. Σ-types)

• algebraic effects and handlers

• natural denotational semantics, using standard math. tools

Ongoing work

• integrating dependent- and effect-typing

• e.g., fibred parametrised adjunctions for a principled account of
resource-dependent effects in Idris

EffM ε1

(
(x :A).ε2(x)

)
= Uε1

(
Σx :A.Fε2(x)(1)

)
• homomorphic type-dependency on effectful computations

Thank you for listening!
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