
When Programs Have to Watch Paint Dry

Danel Ahman

Faculty of Mathematics and Physics (FMF)

University of Ljubljana

FoSSaCS 2023, Paris, 24.04.2023

Safe usage of resources in programming

Safe usage of resources in programming

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

...

where the resources are the various car parts (body, doors, . . .)

‚ Much of existing work has focused on how such res. are used

‚ linear types can be used to avoid discarding and duplication

‚ session types can be used to enforce order of operations

‚ runners of alg. effs. can be used to ensure proper finalisation

‚ . . .

Safe usage of resources in programming

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

...

where the resources are the various car parts (body, doors, . . .)

‚ Much of existing work has focused on how such res. are used

‚ linear types can be used to avoid discarding and duplication

‚ session types can be used to enforce order of operations

‚ runners of alg. effs. can be used to ensure proper finalisation

‚ . . .

Safe usage of temporal resources in prog.

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

...

where the resources are the various car parts (body, doors, . . .)

‚ In this paper, we instead focus on when resources are used!

Safe usage of temporal resources in prog.

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door');

...

‚ Correctness relies on the parts given enough time to dry:

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls, or

(c) the robot arm could meanwhile do other useful work

‚ But how to reason about the result being temporally correct?

What’s in the paper

‚ Temporal resources via time-graded modal types

‚ A core calculus λrτ s for safe programming with temp. resources

‚ Fitch-style time-graded modal types (for temporal resources)

‚ temporally aware graded algebraic effects (for time passage)

‚ temporally aware effect handlers (for redefining operations)

‚ with an FGCBV-style equational presentation

‚ A natural denotational semantics justifying the proposed design

‚ adjoint strong monoidal functors (for modalities)

‚ r´s-strong time-graded monad (for effectful computations)

‚ a presheaf example (for concreteness and intuition)

Temporal resources via time-graded modal types

A naive solution attempt

‚ What if we stay in a simply typed effectful language

and simply make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry;

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No!

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where/when it is supposed to happen

A naive solution attempt

‚ What if we stay in a simply typed effectful language

and simply make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry; Ð τdry time now passes

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No!

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where/when it is supposed to happen

Our solution: temporal resource types and λrτ s

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX pτ P Nq

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

‚ This allows us to work with resource values such as

body1 : rτdry-bodysBody left-door1 : rτdry-doorsDoor ...

Our solution: temporal resource types and λrτ s

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX pτ P Nq

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

‚ This allows us to work with resource values such as

body1 : rτdry-bodysBody left-door1 : rτdry-doorsDoor ...

Our solution: temporal resource types and λrτ s

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX pτ P Nq

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

‚ This allows us to work with resource values such as

body1 : rτdry-bodysBody left-door1 : rτdry-doorsDoor ...

Time-graded Fitch-style presentation

‚ We also include context modalities (modelling time passage)

Γ ::“ ¨ | Γ , x :X | Γ , x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temporal resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for Γs with τ ď time Γ, i.e., x τ y is param. r. adj. (Gratzer et al. ’22)

Time-graded Fitch-style presentation

‚ We also include context modalities (modelling time passage)

Γ ::“ ¨ | Γ , x :X | Γ , x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temporal resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for Γs with τ ď time Γ, i.e., x τ y is param. r. adj. (Gratzer et al. ’22)

Time-graded Fitch-style presentation

‚ We also include context modalities (modelling time passage)

Γ ::“ ¨ | Γ , x :X | Γ , x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temporal resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for Γs with τ ď time Γ, i.e., x τ y is param. r. adj. (Gratzer et al. ’22)

Time-graded Fitch-style presentation

‚ We also include context modalities (modelling time passage)

Γ ::“ ¨ | Γ , x :X | Γ , x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temporal resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for Γs with τ ď time Γ, i.e., x τ y is param. r. adj. (Gratzer et al. ’22)

Equational theory and admissible typ. rules

‚ The computational behaviour of box & unbox is unsurprising

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1 pβq

Γ $ unboxτ V as x in Nrpboxτ xq{y s ” NrV {y s : Y ! τ 1 pηq

with the rest of the eq. theory also fairly standard for FGCBV

‚ The type system admits standard structural rules (wk, . . .)

‚ It also admits temporal rules for context modalities

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

i.e., x´ y is contravariant strong monoidal functor (with co-str.)

Equational theory and admissible typ. rules

‚ The computational behaviour of box & unbox is unsurprising

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1 pβq

Γ $ unboxτ V as x in Nrpboxτ xq{y s ” NrV {y s : Y ! τ 1 pηq

with the rest of the eq. theory also fairly standard for FGCBV

‚ The type system admits standard structural rules (wk, . . .)

‚ It also admits temporal rules for context modalities

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

i.e., x´ y is contravariant strong monoidal functor (with co-str.)

Temporally aware graded algebraic effects

‚ Given by temporal operation signatures, such as

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÑ
rτdrysPart ! τpaint

giving rise to operation calls with temporal awareness, e.g.,

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where M can assume that τpaint additional time has passed

‚ This temporal awareness also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Temporally aware graded algebraic effects

‚ Given by temporal operation signatures, such as

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÑ
rτdrysPart ! τpaint

giving rise to operation calls with temporal awareness, e.g.,

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where M can assume that τpaint additional time has passed

‚ This temporal awareness also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Temporally aware effect handlers

‚ Allow us to redefine the operations

‚ e.g., to split complex assembly tasks into smaller ones

‚ Effect handlers and effect handling2

Γ $ M : X ! τ

Γ , x τ y , y :X $ N : Y ! τ 1
´

@τ2 . Γ , x :Aop , k : rτops
`

Bop Ñ Y ! τ2
˘

$ Mop : Y ! τop ` τ
2
¯

op PO

Γ $ handle M with
`

x .k .Mop

˘

op PO to y in N : Y ! τ ` τ 1

have to adhere to the temporal discipline

‚ op. cases Mop require τop-time to pass before resuming cont. k

‚ continuation N can still safely assume τ -time has passed

2We assume being given a set O of typed operation symbols op : Aop Ñ Bop.

Back to controlling the robot arm

‚ Using the above, we can now rewrite our example in λrτ s as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

‚ This is remarkably similar to the naive attempt from earlier!

‚ The only difference is some additional calls to unbox

‚ But we have gained strong static temporal guarantees!

Back to controlling the robot arm

‚ Using the above, we can now rewrite our example in λrτ s as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

‚ This is remarkably similar to the naive attempt from earlier!

‚ The only difference is some additional calls to unbox

‚ But we have gained strong static temporal guarantees!

Back to controlling the robot arm

‚ Using the above, we can now rewrite our example in λrτ s as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

‚ This is remarkably similar to the naive attempt from earlier!

‚ The only difference is some additional calls to unbox

‚ But we have gained strong static temporal guarantees!

Back to controlling the robot arm

‚ Alternatively, instead of blocking execution with delay , we

could have equally well called other useful alg. operations

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

op1 v1; . . . opn vn; Ð as long as they collectively take ě τdry time

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

!

A glimpse into the denotational semantics

Denotational semantics: category C

‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for most of the development, Kleisli exps. AñT τ B suffice

‚ Example: presheaf category SetpN,ďq (of time-varying sets)

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone (resources do not expire)

given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q

Denotational semantics: modal types rτ sX

‚ Want there to be strong monoidal functor

r´s : pN,ďq ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.3

εA : r0sA
–
ÝÑ A δA,τ1,τ2 : rτ1 ` τ2sA

–
ÝÑ rτ1s prτ2sAq

‚ In the presheaf example, we define r´s as

prτ sAqptq
def
“ Apt ` τq

3In Fitch-style, the S4 modality ˝ is interpreted by an idempotent comonad

Denotational semantics: context modality

‚ Want there to be (contravariant) strong monoidal functor

x´ y : pN,ďqop
ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.4

ηA : A
–
ÝÑ x 0 yA µA,τ1,τ2 : x τ1 y px τ2 yAq

–
ÝÑ x τ1 ` τ2 yA

‚ In the presheaf example, we define x´ y as

px τ yAqptq
def
“ pτ ď tq ˆ Apt 9́ τq

4In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad

Denotational semantics: mod. interaction

‚ Also want there to be a family of adjunctions5

x τ y % rτ s

witnessed by natural transformations

η%A,τ : A ÝÑ rτ s px τ yAq ε%A,τ : x τ y prτ sAq ÝÑ A

‚ required to interact well with the two strong mon. structures

‚ they allow values/resources to be pushed forward in time

‚ In the presheaf example,

‚ η%A,τ and ε%A,τ are given by id. on A-values, plus by ď-reasoning

‚ ε%A,τ is definable because of the pτ ď tq condition in px τ yAqptq

5In Fitch-style modal λ-calculi, one also requires an adjunction between mods.

Denotational semantics: mod. interaction

‚ Also want there to be a family of adjunctions5

x τ y % rτ s

witnessed by natural transformations

η%A,τ : A ÝÑ rτ s px τ yAq ε%A,τ : x τ y prτ sAq ÝÑ A

‚ required to interact well with the two strong mon. structures

‚ they allow values/resources to be pushed forward in time

‚ In the presheaf example,

‚ η%A,τ and ε%A,τ are given by id. on A-values, plus by ď-reasoning

‚ ε%A,τ is definable because of the pτ ď tq condition in px τ yAqptq

5In Fitch-style modal λ-calculi, one also requires an adjunction between mods.

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc.-graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying standard g. m. laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2
: T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sA ˆ T τ B ÝÑ T τ pAˆ Bq

‚ strTA,B,τ is the same as r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ We also require T to have alg. ops. and support eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc.-graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying standard g. m. laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2
: T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sA ˆ T τ B ÝÑ T τ pAˆ Bq

‚ strTA,B,τ is the same as r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ We also require T to have alg. ops. and support eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc.-graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying standard g. m. laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2
: T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sA ˆ T τ B ÝÑ T τ pAˆ Bq

‚ strTA,B,τ is the same as r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ We also require T to have alg. ops. and support eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ In the presheaf example, the graded monad7 is given by cases

a P Aptq

ret a P pT 0Aqptq

a P rrAopssptq k P
`

rτops prrBopss ñ T τ Aq
˘

ptq

op a k P pT pτop ` τqAqptq

k P rτ s pT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq

with the graded-monadic structure given by unsurprising recursion

‚ Direct def. in the Agda formalisation uses induction-recursion

‚ IR needed so that k is natural for continuations in effect handling

7This T is for the setting where there are no delay-equations in the calculus

Denotational semantics: comp. effects

‚ In the presheaf example, the graded monad7 is given by cases

a P Aptq

ret a P pT 0Aqptq

a P rrAopssptq k P
`

rτops prrBopss ñ T τ Aq
˘

ptq

op a k P pT pτop ` τqAqptq

k P rτ s pT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq

with the graded-monadic structure given by unsurprising recursion

‚ Direct def. in the Agda formalisation uses induction-recursion

‚ IR needed so that k is natural for continuations in effect handling

7This T is for the setting where there are no delay-equations in the calculus

Let’s wrap it up

Conclusion

‚ Temporal resources can be naturally captured using

‚ modal temporal resource type rτ sX

‚ with a time-graded Fitch-style presentation

‚ using a temporal context modality Γ , x τ y

‚ a time-graded instance of param. r. adjs. (Gratzer et al. ’22)

‚ with a temporally aware type-and-effect system

‚ with a natural category-th. semantics (based on x τ y % rτ s)

‚ The paper is also accompanied by an Agda formalisation

https://github.com/danelahman/temporal-resources

This material is based upon work supported by the Air Force Office of Scientific Research

under award number FA9550-21-1-0024.

https://github.com/danelahman/temporal-resources

Some ongoing/future work directions

‚ Operational semantics

‚ modelling delay and alg. effs. as actually progressing time

‚ Sub-effecting

‚ as sub-effecting M = all-possible-ways-to-insert-delays-into-M?

‚ (Primitive) recursion

‚ grade of rec V Mz x .k .Ms computed by iteration/recursion

‚ Mz and Ms being temporally aware depending on iteration count

‚ Generalising gradings

‚ other pN, 0,`, 9́ ,ďq-like structures, e.g., (sets of) traces or states

‚ different structures, e.g., as Γ, x τptraceq y, x :X $ N : Y ! trace1

‚ Expiring resources

‚ where resources are usable only for an interval, e.g., as r τ, τ 1 sX

