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Safe usage of resources in programming



Safe usage of resources in programming

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

...

where the resources are the various car parts (body, doors, . . . )

‚ Much of existing work has focused on how such res. are used

‚ linear types can be used to avoid discarding and duplication

‚ session types can be used to enforce order of operations

‚ runners of alg. effs. can be used to ensure proper finalisation

‚ . . .
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Safe usage of temporal resources in prog.

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

...

where the resources are the various car parts (body, doors, . . . )

‚ In this paper, we instead focus on when resources are used!



Safe usage of temporal resources in prog.

‚ Let us consider controlling a robot arm on a production line:

...

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door');

...

‚ Correctness relies on the parts given enough time to dry:

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls, or

(c) the robot arm could meanwhile do other useful work

‚ But how to reason about the result being temporally correct?



What’s in the paper

‚ Temporal resources via time-graded modal types

‚ A core calculus λrτ s for safe programming with temp. resources

‚ Fitch-style time-graded modal types (for temporal resources)

‚ temporally aware graded algebraic effects (for time passage)

‚ temporally aware effect handlers (for redefining operations)

‚ with an FGCBV-style equational presentation

‚ A natural denotational semantics justifying the proposed design

‚ adjoint strong monoidal functors (for modalities)

‚ r´s-strong time-graded monad (for effectful computations)

‚ a presheaf example (for concreteness and intuition)



Temporal resources via time-graded modal types



A naive solution attempt

‚ What if we stay in a simply typed effectful language

and simply make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry;

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No!

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where/when it is supposed to happen
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Our solution: temporal resource types and λrτ s

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX pτ P Nq

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

‚ This allows us to work with resource values such as

body1 : rτdry-bodysBody left-door1 : rτdry-doorsDoor ...
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Time-graded Fitch-style presentation

‚ We also include context modalities (modelling time passage)

Γ ::“ ¨ | Γ , x :X | Γ , x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temporal resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for Γs with τ ď time Γ, i.e., x τ y is param. r. adj. (Gratzer et al. ’22)
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Equational theory and admissible typ. rules

‚ The computational behaviour of box & unbox is unsurprising

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1 pβq

Γ $ unboxτ V as x in Nrpboxτ xq{y s ” NrV {y s : Y ! τ 1 pηq

with the rest of the eq. theory also fairly standard for FGCBV

‚ The type system admits standard structural rules (wk, . . . )

‚ It also admits temporal rules for context modalities

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

 

i.e., x´ y is contravariant strong monoidal functor (with co-str.)
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Temporally aware graded algebraic effects

‚ Given by temporal operation signatures, such as

paint :
ÝÝÑ
Part  

ÝÝÝÝÝÝÑ
rτdrysPart ! τpaint

giving rise to operation calls with temporal awareness, e.g.,

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where M can assume that τpaint additional time has passed

‚ This temporal awareness also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1
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Temporally aware effect handlers

‚ Allow us to redefine the operations

‚ e.g., to split complex assembly tasks into smaller ones

‚ Effect handlers and effect handling2

Γ $ M : X ! τ

Γ , x τ y , y :X $ N : Y ! τ 1
´

@τ2 . Γ , x :Aop , k : rτops
`

Bop Ñ Y ! τ2
˘

$ Mop : Y ! τop ` τ
2
¯

op PO

Γ $ handle M with
`

x .k .Mop

˘

op PO to y in N : Y ! τ ` τ 1

have to adhere to the temporal discipline

‚ op. cases Mop require τop-time to pass before resuming cont. k

‚ continuation N can still safely assume τ -time has passed

2We assume being given a set O of typed operation symbols op : Aop Ñ Bop.



Back to controlling the robot arm

‚ Using the above, we can now rewrite our example in λrτ s as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

‚ This is remarkably similar to the naive attempt from earlier!

‚ The only difference is some additional calls to unbox

‚ But we have gained strong static temporal guarantees!
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Back to controlling the robot arm

‚ Alternatively, instead of blocking execution with delay , we

could have equally well called other useful alg. operations

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

op1 v1; . . . opn vn; Ð as long as they collectively take ě τdry time

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y

unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

!



A glimpse into the denotational semantics



Denotational semantics: category C

‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for most of the development, Kleisli exps. AñT τ B suffice

‚ Example: presheaf category SetpN,ďq (of time-varying sets)

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone (resources do not expire)

given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q



Denotational semantics: modal types rτ sX

‚ Want there to be strong monoidal functor

r´s : pN,ďq ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.3

εA : r0sA
–
ÝÑ A δA,τ1,τ2 : rτ1 ` τ2sA

–
ÝÑ rτ1s prτ2sAq

‚ In the presheaf example, we define r´s as

prτ sAqptq
def
“ Apt ` τq

3In Fitch-style, the S4 modality ˝ is interpreted by an idempotent comonad



Denotational semantics: context modality

‚ Want there to be (contravariant) strong monoidal functor

x´ y : pN,ďqop
ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.4

ηA : A
–
ÝÑ x 0 yA µA,τ1,τ2 : x τ1 y px τ2 yAq

–
ÝÑ x τ1 ` τ2 yA

‚ In the presheaf example, we define x´ y as

px τ yAqptq
def
“ pτ ď tq ˆ Apt 9́ τq

4In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad



Denotational semantics: mod. interaction

‚ Also want there to be a family of adjunctions5

x τ y % rτ s

witnessed by natural transformations

η%A,τ : A ÝÑ rτ s px τ yAq ε%A,τ : x τ y prτ sAq ÝÑ A

‚ required to interact well with the two strong mon. structures

‚ they allow values/resources to be pushed forward in time

‚ In the presheaf example,

‚ η%A,τ and ε%A,τ are given by id. on A-values, plus by ď-reasoning

‚ ε%A,τ is definable because of the pτ ď tq condition in px τ yAqptq

5In Fitch-style modal λ-calculi, one also requires an adjunction between mods.
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Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc.-graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying standard g. m. laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2
: T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sA ˆ T τ B ÝÑ T τ pAˆ Bq

‚ strTA,B,τ is the same as r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ We also require T to have alg. ops. and support eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)
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Denotational semantics: comp. effects

‚ In the presheaf example, the graded monad7 is given by cases

a P Aptq

ret a P pT 0Aqptq

a P rrAopssptq k P
`

rτops prrBopss ñ T τ Aq
˘

ptq

op a k P pT pτop ` τqAqptq

k P rτ s pT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq

with the graded-monadic structure given by unsurprising recursion

‚ Direct def. in the Agda formalisation uses induction-recursion

‚ IR needed so that k is natural for continuations in effect handling

7This T is for the setting where there are no delay-equations in the calculus
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Let’s wrap it up



Conclusion

‚ Temporal resources can be naturally captured using

‚ modal temporal resource type rτ sX

‚ with a time-graded Fitch-style presentation

‚ using a temporal context modality Γ , x τ y

‚ a time-graded instance of param. r. adjs. (Gratzer et al. ’22)

‚ with a temporally aware type-and-effect system

‚ with a natural category-th. semantics (based on x τ y % rτ s)

‚ The paper is also accompanied by an Agda formalisation

https://github.com/danelahman/temporal-resources

This material is based upon work supported by the Air Force Office of Scientific Research

under award number FA9550-21-1-0024.

https://github.com/danelahman/temporal-resources


Some ongoing/future work directions

‚ Operational semantics

‚ modelling delay and alg. effs. as actually progressing time

‚ Sub-effecting

‚ as sub-effecting M = all-possible-ways-to-insert-delays-into-M?

‚ (Primitive) recursion

‚ grade of rec V Mz x .k .Ms computed by iteration/recursion

‚ Mz and Ms being temporally aware depending on iteration count

‚ Generalising gradings

‚ other pN, 0,`, 9́ ,ďq-like structures, e.g., (sets of) traces or states

‚ different structures, e.g., as Γ, x τptraceq y, x :X $ N : Y ! trace1

‚ Expiring resources

‚ where resources are usable only for an interval, e.g., as r τ, τ 1 sX


