|§ 9.‘9 El

P

When Programs Have to Watch Paint Dry

™

Danel Ahman

Faculty of Mathematics and Physics (FMF)
University of Ljubljana

FoSSaCS 2023, Paris, 24.04.2023

Safe usage of resources in programming

Safe usage of resources in programming

e Let us consider controlling a robot arm on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

where the resources are the various car parts (body, doors, . ..

Safe usage of resources in programming

e Let us consider controlling a robot arm on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

where the resources are the various car parts (body, doors, .. .)

e Much of existing work has focused on how such res. are used
e linear types can be used to avoid discarding and duplication
e session types can be used to enforce order of operations
e runners of alg. effs. can be used to ensure proper finalisation

Safe usage of temporal resources in prog.

e Let us consider controlling a robot arm on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door');

where the resources are the various car parts (body, doors, . ..

¢ In this paper, we instead focus on when resources are used!

Safe usage of temporal resources in prog.

e Let us consider controlling a robot arm on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in
< T4ry time needs to pass
assemble (body', left-door', right-door');

e Correctness relies on the parts given enough time to dry:
(a) a scheduler could dynamically block execution, or
(b) a compiler could insert enough time delay between op. calls, or

(c) the robot arm could meanwhile do other useful work

e But how to reason about the result being temporally correct?

What's in the paper

e Temporal resources via time-graded modal types

e A core calculus)\, for safe programming with temp. resources

Fitch-style time-graded modal types (for temporal resources)

temporally aware graded algebraic effects (for time passage)

temporally aware effect handlers (for redefining operations)

with an FGCBV-style equational presentation

e A natural denotational semantics justifying the proposed design
¢ adjoint strong monoidal functors (for modalities)
e [—]-strong time-graded monad (for effectful computations)

e a presheaf example (for concreteness and intuition)

Temporal resources via time-graded modal types

A naive solution attempt

e What if we stay in a simply typed effectful language
and simply make paint return the desired drying time?

let (741, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay 74y;

assemble (body', left-door', right-door')

e So, are we done?

A naive solution attempt

e What if we stay in a simply typed effectful language
and simply make paint return the desired drying time?

let (741, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay 74y; < Tdry time now passes

assemble (body', left-door', right-door')

e So, are we done?

e No!
e all the burden for correctness is on the programmer’s shoulders

e typechecker saying yes does not guarantee that delay happens, or

that it happens where/when it is supposed to happen

Our solution: temporal resource types and A[;

Our solution: temporal resource types and)\[T]
e We use a time-graded modal type to capture temporal resources

X, Y, Z = ... | [7]X (T eN)

e Intuition 1: [7] X denotes that an X-typed resource becomes

usable in at most 7 time units (and remains so afterwards)

e Intuition 2: at least 7 time units need to pass before a

program is allowed to access the underlying X-typed resource

Our solution: temporal resource types and A[;

e We use a time-graded modal type to capture temporal resources

X, Y, Z = ... | [7]X (T eN)

Intuition 1: [7] X denotes that an X-typed resource becomes

usable in at most 7 time units (and remains so afterwards)

Intuition 2: at least 7 time units need to pass before a

program is allowed to access the underlying X-typed resource

This allows us to work with resource values such as

body’ : [Tury-body | Body left-door’ : [Tury-door| DoOF

Time-graded Fitch-style presentation

Time-graded Fitch-style presentation

e We also include context modalities (modelling time passage)
r o= - | xX | I, {r)

Time-graded Fitch-style presentation

e We also include context modalities (modelling time passage)
r o= - | xX | I, {r)

e Introduction form is given by boxing up a temp. resource

N{ryrVvV:X
I-box, V:[7]X

Time-graded Fitch-style presentation

e We also include context modalities (modelling time passage)
r o= - | xX | I, {r)

e Introduction form is given by boxing up a temp. resource

N{ryrVvV:X
I-box, V:[7]X

e Elimination rule is given by unboxing a temporal resource
T < timel rrFV:[r]X MLx:XEN:Y !
I unbox, VasxinN:Y !l 7

where ||, takes ' to a 7 time units earlier state!, e.g., as in

|r>X:X7<4>>y:Y><1>72:Z‘3 = r>X:Xa<2>

L\We have | — |+ 4 {7) for I's with 7 < timeTl, i.e., {7) is param. r. adj. (Gratzer et al. '22)

Equational theory and admissible typ. rules
e The computational behaviour of box & unbox is unsurprising

I+ unbox, (box, V)asxin N=N[V/x]:Y 17 (B)

I+ unbox,; V as x in N[(box, x)/y] = N[V/y]: Y I 7 (n)

with the rest of the eq. theory also fairly standard for FGCBV

Equational theory and admissible typ. rules
e The computational behaviour of box & unbox is unsurprising
[b unbox, (box, V) as x in N = N[V/x]: Y !/ (8)
I+ unbox,; V as x in N[(box, x)/y] = N[V/y]: Y I 7 (n)

with the rest of the eq. theory also fairly standard for FGCBV

e The type system admits standard structural rules (wk, ...)
e It also admits temporal rules for context modalities

T J T{n+mn)-Jd T{rdYFJ 7<7 T{r)x: X J
r-J T {n){(n)+J M y=J Cox: X, ()= J
!

i.e., (—) is contravariant strong monoidal functor (with co-str.)

Temporally aware graded algebraic effects
e Given by temporal operation signatures, such as
paint Part ~ m I Tpaint
giving rise to operation calls with temporal awareness, e.g.,

[~ V :Body x Door x Door
[, {Tpaint) » ¥ :[7Tdry] Body x [7qry] Door x [74ry] Door = M : X | 7

M= paint V (y. M) : X | Tpaine + 7

where M can assume that 7,.i,: additional time has passed

Temporally aware graded algebraic effects
e Given by temporal operation signatures, such as
paint Part ~ m I Tpaint
giving rise to operation calls with temporal awareness, e.g.,

[~ V :Body x Door x Door
[, {Tpaint) » ¥ :[7Tdry] Body x [7qry] Door x [74ry] Door = M : X | 7

M= paint V (y. M) : X | Tpaine + 7

where M can assume that 7,.i,: additional time has passed

e This temporal awareness also happens in seq. composition

rMN=M: X!~ Fr,(r), x:XeN:Y !
MM-letx=MinN:Y !l 7r+7

Temporally aware effect handlers

e Allow us to redefine the operations

e e.g., to split complex assembly tasks into smaller ones

e Effect handlers and effect handling?
rM-M: X!
Fr,{(ry,y: X=N:Y 17

(VT”' M, x:Aop , k:[Top](Bop — Y!T”) - Mop: Y ! 7o +7_//) ,
op€e

I — handle M with (X'k'MOP)opGO toyinN:Y!r4+7

have to adhere to the temporal discipline
e op. cases M,, require 7, -time to pass before resuming cont. k

e continuation NV can still safely assume 7-time has passed

2\We assume being given a set O of typed operation symbols op : Agy — Bap.

Back to controlling the robot arm

Back to controlling the robot arm

e Using the above, we can now rewrite our example in A\ as

let (body', left-door', right-door') = < resource-typed variables
paint (body, left-door, right-door) in

delay 7qry; < forces 74y, time to pass
unbox body' as body" in «— context: [, body’:[74y]|Body , ..., {(Tary)
unbox left-door' as left-door'" in

unbox right-door' as right-door'" in

assemble (body", left-door", right-door'') <« non-resource-typed variables

Back to controlling the robot arm

e Using the above, we can now rewrite our example in A\ as

let (body', left-door', right-door') = < resource-typed variables
paint (body, left-door, right-door) in

delay 7qry; < forces 74y, time to pass
unbox body' as body" in < context: ', body’:[7qr|Body , ..., {Tar)
unbox left-door' as left-door'" in

unbox right-door' as right-door'" in

assemble (body", left-door", right-door'') <« non-resource-typed variables

e This is remarkably similar to the naive attempt from earlier!

e The only difference is some additional calls to unbox

e But we have gained strong static temporal guarantees!

Back to controlling the robot arm

e Alternatively, instead of blocking execution with delay , we

could have equally well called other useful alg. operations

let (body', left-door', right-door') = < resource-typed variables
paint (body, left-door, right-door) in

I Op1Vi...Op, Vi < as long as they collectively take > 74, time
unbox body' as body'' in < context: [, body’:[74y]|Body , ..., {(Tary)
unbox left-door' as left-door'" in

unbox right-door' as right-door'" in

assemble (body", left-door", right-door"') <« non-resource-typed variables

A glimpse into the denotational semantics

Denotational semantics: category C

e Want C to have binary products (1, A x B)

e Want C to have exponentials A =B

e for most of the development, Kleisli exps. A = T 7 B suffice

e Example: presheaf category Set™<) (of time-varying sets)

e gives Kripke's possible worlds style semantics

e but with all types being monotone (resources do not expire)
given A € Set™NS)| then

th <tb implies A(tl < tz) : A(tl) — A(tg)

Denotational semantics: modal types [7]| X
e Want there to be strong monoidal functor
[_] : (N7 <) - [C,C]

with the strong monoidality witnessed by the natural isos.3

ea:[0JA— A ann:[n+ 1] A= 1] ([n] A)

e In the presheaf example, we define [—] as

([F1A)(E) = Alt+7)

3In Fitch-style, the S4 modality O is interpreted by an idempotent comonad

Denotational semantics: context modality
e Want there to be (contravariant) strong monoidal functor
(=):(N,<)*® —[C,C]
with the strong monoidality witnessed by the natural isos.*

Ma:A—>(0)A panm {11)[(T2)A) {1+ T2)A

e In the presheaf example, we define (—) as

({1 YA)(t) « (r<t)xA(t=r1)

#In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad

Denotational semantics: mod. interaction

e Also want there to be a family of adjunctions®

(r) 7]

witnessed by natural transformations
N A—[T1((7)A) ear (T ([r]A) — A

e required to interact well with the two strong mon. structures

e they allow values/resources to be pushed forward in time

5In Fitch-style modal A-calculi, one also requires an adjunction between mods.

Denotational semantics: mod. interaction
e Also want there to be a family of adjunctions®

(r) 7]

witnessed by natural transformations
N A—[T1((7)A) ear (T ([r]A) — A

e required to interact well with the two strong mon. structures

e they allow values/resources to be pushed forward in time

¢ In the presheaf example,

. 77;"7 and 5277 are given by id. on A-values, plus by <-reasoning

o 52,7 is definable because of the (7 < t) condition in ({7)A)(t)

5In Fitch-style modal A-calculi, one also requires an adjunction between mods.

Denotational semantics: comp. effects
e Want there to be a graded monad (disc.-graded as no sub-eff.)
T:N—[C,C]
with unit and multiplication (satisfying standard g. m. laws)

777A;A—> TOA ’LL£77—177_2: TT]_(TTQA)—>T(7'1+7'2)A

and with a [—]-strength® (satisfying variants of std. str. laws)
stthp, [T]JAxTTB— T7(AxB)

6Terminology follows the parlance of Bierman and de Paiva ({ was [J-strong)

Denotational semantics: comp. effects
e Want there to be a graded monad (disc.-graded as no sub-eff.)
T:N— [C,C]
with unit and multiplication (satisfying standard g. m. laws)
M:A—TO0A ph, T (TnA) —T(n+n)A
and with a [—]-strength® (satisfying variants of std. str. laws)

stthp, [T]JAxTTB— T7(AxB)

e str), g is the same as [—|-variant of enrichment of T, i.e.,

[T](A=B) — (TTA=Tr71B)

6Terminology follows the parlance of Bierman and de Paiva ({ was [J-strong)

Denotational semantics: comp. effects
e Want there to be a graded monad (disc.-graded as no sub-eff.)
T:N—[C,C]
with unit and multiplication (satisfying standard g. m. laws)
M:A—TO0A ph, T (TnA) —T(n+n)A
and with a [—]-strength® (satisfying variants of std. str. laws)

stthp, [T]JAxTTB— T7(AxB)

e str), g is the same as [—|-variant of enrichment of T, i.e.,

[T](A=B) — (TTA=Tr71B)

e We also require T to have alg. ops. and support eff. handling

6Terminology follows the parlance of Bierman and de Paiva ({ was [J-strong)

Denotational semantics: comp. effects

e In the presheaf example, the graded monad’ is given by cases

a € At)
reta € (TOA)(t)

a € [Aspll(t) k € ([TOP]([[BOP]] = TTA))(t)
opak € (T (1op + 7) A)(t)

k e [7](T 7 A)(t)
delaym k € (T (7 +7)A)(t)

with the graded-monadic structure given by unsurprising recursion

"This T is for the setting where there are no delay-equations in the calculus

Denotational semantics: comp. effects

e In the presheaf example, the graded monad’ is given by cases

a € At)
reta € (TOA)(t)

a € [Aspll(t) k € ([TOP]([[BOP]] = TTA))(t)
opak € (T (1op + 7) A)(t)

k e [7](T 7 A)(t)
delaym k € (T (7 +7)A)(t)

with the graded-monadic structure given by unsurprising recursion

e Direct def. in the Agda formalisation uses induction-recursion

o IR needed so that k is natural for continuations in effect handling

"This T is for the setting where there are no delay-equations in the calculus

Let’s wrap it up

Conclusion
e Temporal resources can be naturally captured using
e modal temporal resource type [7] X

e with a time-graded Fitch-style presentation
e using a temporal context modality ', {7)

e a time-graded instance of param. r. adjs. (Gratzer et al. '22)
e with a temporally aware type-and-effect system

e with a natural category-th. semantics (based on {7) - [7])

e The paper is also accompanied by an Agda formalisation

https://github.com /danelahman /temporal-resources

This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-21-1-0024.

https://github.com/danelahman/temporal-resources

Some ongoing/future work directions

¢ Operational semantics

e modelling delay and alg. effs. as actually progressing time

Sub-effecting

e as sub-effecting M = all-possible-ways-to-insert-delays-into- M?

(Primitive) recursion

e grade of rec V M, x.k.Ms computed by iteration/recursion

e M, and Ms being temporally aware depending on iteration count

Generalising gradings
e other (N, 0, +, =, <)-like structures, e.g., (sets of) traces or states

e different structures, e.g., as [, {7 (trace)), x: X = N: Y ! trace/

Expiring resources

e where resources are usable only for an interval, e.g., as [7,7'] X

