{ Refinement Types | Algebraic Effects }

Danel Ahman
LFCS, University of Edinburgh

HOPE Workshop, 28 September 2013

Laboratory for Foundations
of Computer Science

informatics lfcs

THE UNIVERSITY of EDINBURGH

Overview

m Refinement types & effects

m What do we feel is missing from refinement type systems?

m Our way of bridging this gap

m Some examples

Overview

m Refinement types & effects

m What do we feel is missing from refinement type systems?
m A uniform treatment of various computational effects
m General logical specifications for arbitrary effects

m Our way of bridging this gap

m Some examples

Overview

m Refinement types & effects

m What do we feel is missing from refinement type systems?
m A uniform treatment of various computational effects
m General logical specifications for arbitrary effects

m Our way of bridging this gap
m Algebraic effects and their logics
m General effectful ref. types through algebraic effectful reasoning
m Hopefully leads us to a general theory of effectful refinement
types

m Some examples

Overview

m Refinement types & effects

m What do we feel is missing from refinement type systems?
m A uniform treatment of various computational effects
m General logical specifications for arbitrary effects

m Our way of bridging this gap
m Algebraic effects and their logics
m General effectful ref. types through algebraic effectful reasoning
m Hopefully leads us to a general theory of effectful refinement
types

m Some examples
m State and pre-/post-conditions
m Communication and sessions
m Combination of the two

Effects in refinement type systems

m Most current refinement type systems target specific effects:
m F7 extended with a refined state monad

m by adding a new computation type {(so)wo}x : o{(s1)¢1}

Effects in refinement type systems

m Most current refinement type systems target specific effects:
m F7 extended with a refined state monad
m by adding a new computation type {(so)wo}x : o{(s1)¢1}

m Monadic F* with a Dijkstra monad
m by adding a comp. type M o wp

Effects in refinement type systems

m Most current refinement type systems target specific effects:
m F7 extended with a refined state monad
m by adding a new computation type {(so)wo}x : o{(s1)¢1}

m Monadic F* with a Dijkstra monad
m by adding a comp. type M o wp

m Session types with linear refinement types
m by adding ref. ty. {: T | ¢} to session types (with ¢ in MLL)

Effects in refinement type systems

m Most current refinement type systems target specific effects:
m F7 extended with a refined state monad
m by adding a new computation type {(so)wo}x : o{(s1)¢1}
m Monadic F* with a Dijkstra monad
m by adding a comp. type M o wp

m Session types with linear refinement types
m by adding ref. ty. {: T | ¢} to session types (with ¢ in MLL)

m Some systems are more abstract in effects they consider:
m Effective theory of type refinements
m term refinements ¢: bool, its(t), ¢1 — w2, (©1,9%1) = (P2, %2)
m world refinements 1): formulas in linear logic

m parametrized by a set of operations (together with a signature of
operation refinements and a transition function for operations)

Different effects, languages and specifications

m Consider a (fragment of a) simple communication language:

't: A I't:FA T,2:AFwu:FB
'k returnt: FA I'kttox.u: FB
I'z:natkHt: FA I'kt:nat THu:FA
I F receive(z.t) : FA 'k sendi(u) : FA
|
]
|
]

Different effects, languages and specifications

m Consider a (fragment of a) simple communication language:

F+¢: A PHt:5(A) Tyx:Akwu:S(B)
't returnt : end(A) Pkttox.u: S(A);S(B)
D,z :natkt: S(A) Fkt:nat ThHeplt/z] Thu:S(A)

T F receive(z.t) : 7(x : nat).S(A) I Fsend;(u) : (2 : nat | ¢).S(A)

m Session refinements (similar syntax to session types):
m S(A) m=end(A) | ?(z:nat).S(A) | (z:nat] p).S(A)

Different effects, languages and specifications

m Consider a (fragment of a) simple communication language:

F+¢: A PHt:5(A) Tyx:Akwu:S(B)
't returnt : end(A) Pkttox.u: S(A);S(B)
D,z :natkt: S(A) Fkt:nat ThHeplt/z] Thu:S(A)

T F receive(z.t) : 7(x : nat).S(A) I Fsend;(u) : (2 : nat | ¢).S(A)
m Session refinements (similar syntax to session types):

m S(A) m=end(A) | ?(z:nat).S(A) | (z:nat] p).S(A)
m Example programs with their refinements:

m ['F receive(z.receive(y.t)) : 7(x : nat).”(y : nat).S(1)

m ' sendy(sendyi(w)) : (z:nat | 7).y :nat |y > x).5(1)

Different effects, languages and specifications

m Consider a (fragment of a) simple state language:

F+t: A 'tt:FA Tyxz:Atwu:FB
't returnt: FA I'Fttox.u: FB
I'z:natkHt: FA I'tt:nat THu:FA
'k lookup(x.t) : FA I'F update,(u) : FA

Different effects, languages and specifications

m Consider a (fragment of a) simple state language:

Dyz:nat 1t : V2 xo.{(x1).00}y : A{(x2).0R}
'k \V/T{(l())—r}l . nat{(’.z'j)..m =29 ANT1 = I/} [vr{(l())\;p}l . nat{(.l‘|:).~75(2}

Ik lookup(x.t) : VZA{(x0).0opty : A{(x2).0Rr}
Fkt:nat TFu: Ve xo{(x1).00tr: A{(x2).or}
I} VT{(!())T}, . 1{(I|)”I‘| /} E \VT{(I‘(]) @op } : 1{(1|)x73(2}
Tt update, (w) : V@ {(z0).op}x : A{(x2

m Pre- & post-condition specifications:
VE{(zo).optr : A{(21).00}

Different effects, languages and specifications

m Consider a (fragment of a) simple state language:

Dyz:nat 1t : V2 xo.{(x1).00}y : A{(x2).0R}
I'EVZA{(z0). T}a : nat{(z1).21 = zo A1 =y} CVZ{(z0).0p}z : nat{(x1).00}

Ik lookup(x.t) : VZA{(x0).0opty : A{(x2).0Rr}
I'tt:nat T'FHw:VZ, J(){(J)L,:Q}J A{((l,‘)-oRr}
Tt update,(u) : V:F.{(:m).pp}z {(2). YR}

m Pre- & post-condition specifications:
VE{(zo).optr : A{(21).00}
m Example program with its refinement:

I' - lookup (x.update, | (return %)) : {(x).odd(xq) }a : 1{(x1).cven(z)}

Different effects, languages and specifications

m Also want a combination of these languages and specifications

Different effects, languages and specifications

m Also want a combination of these languages and specifications

m For example, combining state and communication:

Vi {(z0).op}(S(A) > x: A){(21).00}

Different effects, languages and specifications

m Also want a combination of these languages and specifications

m For example, combining state and communication:
VI {(x).op}(S(A) > x : A){(z1).00}

m Example program with a composite refinement:

() | receive(x.lookup(y.if y > = then update,_, (returnx) else return)) :

{(z0). T}(?(x : nat).end(1) >y : D){(x1).(x > z9) = 1 =29 — 2}

Different effects, languages and specifications

m Also want a combination of these languages and specifications

m For example, combining state and communication:
Vi {(z0).op}(S(A) > x: A){(21).00}

m Example program with a composite refinement:

() | receive(x.lookup(y.if y > = then update,_, (returnx) else return)) :

{(z0). T}(?(x : nat).end(1) >y : D){(x1).(x > z9) = 1 =29 — 2}

m Other effects and their specs.?

m Non-standard combinations of specs.?

Our proposed approach

A computational language with algebraic effects

+

— ref. types for general effectful specs.
— using algebraic effectful reasoning

c)
ul

State language Communication language Language X

Refinement types

m The style of ref. types we work with (no effects for time being):
m \-calculus with types A :=a | 1| A1 X Ag | A1 — Ao

Refinement types

m The style of ref. types we work with (no effects for time being):
m \-calculus with types A :=a | 1| A1 X Ag | A1 — Ao

m Refinement types o i=a | 1 | ¥pipy02 | Hgipy00 | {z: 0 | p}

Refinement types

m The style of ref. types we work with (no effects for time being):
m \-calculus with types A :=a | 1| A1 X Ag | A1 — Ao

m Refinement types o i=a | 1 | ¥pipy02 | Hgipy00 | {z: 0 | p}

m Well-formed refinement types I' - o : Ref(A), e.g.:

FT wf It oq : Ref(Ay) [,z :01F o9 : Ref(As)
I'Fa: Ref(a) 'k HI:O—IO-Q : Ref(A1 — AQ)
I'F o : Ref(A) Iz: Al ¢: prop

F'H{x:0| ¢} :Ref(4)

Refinement types

m The style of ref. types we work with (no effects for time being):
m \-calculus with types A :=a | 1| A1 X Ag | A1 — Ao

m Refinement types o i=a | 1 | ¥pipy02 | Hgipy00 | {z: 0 | p}

m Well-formed refinement types I' - o : Ref(A), e.g.:

FT wf It oq : Ref(Ay) [,z :01F o9 : Ref(As)
I'Fa: Ref(a) 'k HI:O—IO-Q : Ref(A1 — AQ)
I'F o : Ref(A) Iz: Al ¢: prop

F'H{x:0| ¢} :Ref(4)

m Well-typed refined terms '+t : 0, e.g.:
kt:o IT| | T°F of|t]/x]

PHt:{z:0| ¢}

Algebraic effects

m Let's look at effects algebraically (for example: state)

Algebraic effects

m Let's look at effects algebraically (for example: state)

m Types (sets) of values (countable) and locations (fin.): Val, Loc

Algebraic effects

m Let's look at effects algebraically (for example: state)
m Types (sets) of values (countable) and locations (fin.): Val, Loc

m Operation symbols:
m lookup : Loc — Val
m update: Loc,Val — 1

Algebraic effects

m Let's look at effects algebraically (for example: state)
m Types (sets) of values (countable) and locations (fin.): Val, Loc

m Operation symbols:
m lookup : Loc — Val
m update: Loc,Val — 1

m Enforce equations on derived terms:

m update; , (lookup;(z.t)) = update, ,(t[v/z])

m update; , (update; ,(t)) = update; ., (t)

m t = lookup;(w.update; ,(t))

m update; ,(update; ,(t)) = updatey ,, (update; ,(t)) (I#1)

Algebraic effects

m Let's look at effects algebraically (for example: state)
m Types (sets) of values (countable) and locations (fin.): Val, Loc

m Operation symbols:
m lookup : Loc — Val
m update: Loc,Val — 1

m Enforce equations on derived terms:

m update; , (lookup;(z.t)) = update, ,(t[v/z])

m update; , (update; ,(t)) = update; ., (t)

m t = lookup;(w.update; ,(t))

m update; ,(update; ,(t)) = updatey ,, (update; ,(t)) (I#1)
.

m Your usual monad through free algebra construction:
m T'=UF = (Valto x —)Va™

The programming language

m We use a variant of the Effect Calculus

(closely related to Call-by-Push-Value)

The programming language

m We use a variant of the Effect Calculus
(closely related to Call-by-Push-Value)

m Value and computation types:
n A:Z:C)&’1|A1XA2|A1—>A2’FA

The programming language

m We use a variant of the Effect Calculus
(closely related to Call-by-Push-Value)

m Value and computation types:
n A:Z:C)&’1|A1XA2|A1—>A2’FA

m Terms ¢:
tu=x | x| (t1,t2) | proj;t | Aa.t | t1(t2) | returnt | tytox. ta | opy, (x.t2)
m Well-typed terms ' ¢ : A, e.g.:
THt: A T'Ht: FA; F,x:Aﬂ—Q:Az

I'Freturnt: FA FHtitox.ty: Ay

I'tt1:68 Tx:akFty: A

(op: B —)
I'Fopy(zt2): A

Algebraic effectful reasoning

m This algebraic treatment of effects induces an effectful
multi-sorted logic on EC:

Algebraic effectful reasoning

m This algebraic treatment of effects induces an effectful
multi-sorted logic on EC:

m Value types: Aui=a |1 | A1 x Ay | Ay — Ay | FA
m Computation types: A= A; x A, | A1 — A, | FA
m Terms: t =
x| x| (t1,t2) | proj; t | Ax.t | t1(t2) | returnt | tytox.to | opy, (w.t2)

Algebraic effectful reasoning

m This algebraic treatment of effects induces an effectful
multi-sorted logic on EC:

m Value types: Aui=a |1 | A1 x Ay | Ay — Ay | FA
m Computation types: A= A; x A, | A1 — A, | FA
m Terms: t =
x| x| (t1,t2) | proj; t | Ax.t | t1(t2) | returnt | tytox.to | opy, (w.t2)

Formulas: @ ==t, =to | R(t) | ©(t) | = | @1V o | .00

m Predicates: 7 = X | (¥).¢ | pX.7w | v X7

Algebraic effectful reasoning

m This algebraic treatment of effects induces an effectful
multi-sorted logic on EC:

m Value types: Aui=a |1 | A1 x Ay | Ay — Ay | FA
m Computation types: A= A; x A, | A1 — A, | FA
B Terms: ¢ ==
x| x| (t1,t2) | proj; t | Ax.t | t1(t2) | returnt | tytox.to | opy, (w.t2)
m Formulas: @ ==t, =t, | R(t) | 7(t) | = | @1V o | Fz.0
m Predicates: 7 = X | (¥).¢ | pX.7w | v X7
m Allows algebraic effectful reasoning:

m Reasoning in terms of equivalence classes of computation trees

m Based on the logic of algebraic effects for CBPV

Refinement types for effectful computations

m The story is similar to the A-calc. ref. types I' - o : Ref(A)

Refinement types for effectful computations

m The story is similar to the A-calc. ref. types I' - o : Ref(A)

m We start with EC and its value & computation types:
n A:::Oé’1|A1><A2|A1—>A2’FA

Refinement types for effectful computations

m The story is similar to the A-calc. ref. types I' - o : Ref(A)
m We start with EC and its value & computation types:
n A:::Oé’1|A1><A2|A1—>A2’FA
m We define the refinement types as:
mou=al|l|Xys00 | Upgoo| Fo|{x:0] ¢}
=1y X Ty |yt | Fo

Refinement types for effectful computations

m The story is similar to the A-calc. ref. types I' - o : Ref(A)

m We start with EC and its value & computation types:
n A:::Oé’1|A1><A2|A1—>A2’FA

m We define the refinement types as:
mou=al|l|Xys00 | Upgoo| Fo|{x:0] ¢}
BTu=7 X7y | Upor | Fo

m Notice: no refinements on computation types

m 's do not induce subalgebras in general
m would break the adj. model principle (comp. types as algebras)

Refinement types for effectful computations

m The story is similar to the A-calc. ref. types I' - o : Ref(A)
m We start with EC and its value & computation types:
n A:::Oé’1|A1><A2|A1—>A2’FA
m We define the refinement types as:
mou=al|l|Xys00 | Upgoo| Fo|{x:0] ¢}
=1y X Ty |yt | Fo
m Notice: no refinements on computation types

m 's do not induce subalgebras in general
m would break the adj. model principle (comp. types as algebras)

m Well-formed ref. types similar to A-calc wf. ref. types, e.g.:
'k o : Ref(A) Iyz: Ab ¢ : prop 'k o : Ref(A)

TH{z:0| ¢}:Ref(4) 'k Fo : Ref(FA)

Refinement types for effectful computations ct

m Well-typed terms follow the adj. model considerations:

Refinement types for effectful computations ctd

m Well-typed terms follow the adj. model considerations:

Fkt:o |T|T°F ¢[|t|/z] F'kt:{z:0] ¢}

Dhti{eio) T [T° F glltl/a]
THt:o I'tty:Foy Tyx:oy bty 1

I'treturnt: Fo I'Htitox.ty: 7

I'kt1:68 Dye:akty: T

I'Fopy, (2t2) : 1T

Refinement types for effectful computations ctd

m Well-typed terms follow the adj. model considerations:

Fkt:o |T|T°F ¢[|t|/z] F'kt:{z:0] ¢}

Dhti{eio) T [T° F glltl/a]
THt:o I'tty:Foy Tyx:oy bty 1

I'treturnt: Fo I'Htitox.ty: 7

I'kt1:68 Dye:akty: T

I'Fopy, (2t2) : 1T

m Also, more modular verification rules are derivable, e.g.:
Fkty:01 |on| =8 T z:abtty:on lo| = o2 = A
FF{z:A| 3, 2".x=o0p,(rva"(x)) Not[z'/x] ANV 052" (") /z]} C o

I'top, (z.t2) : 0

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
?(y : nat).S(A) | S1(B); Sa(A)

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
?(y : nat).S(A) | S1(B); Sa(A)

m They are defined as operations on predicates, e.g.:

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
?(y : nat).S(A) | S1(B); Sa(A)

m They are defined as operations on predicates, e.g.:

moend(A) € (2: FA). 32 .2 = returna/

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
?(y : nat).S(A) | S1(B); S2(A)

m They are defined as operations on predicates, e.g.:
moend(A) € (2: FA). 32 .2 = returna/

m (2 :nat | 0).5(A) € (z: FA). 32/ 2" . = sendy (z/) A
pla’[z] A (S(A)[2' [z]) (")

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
2(y < nat).S(A) | S1(B): Sa(A)
m They are defined as operations on predicates, e.g.:
moend(A) € (2: FA). 32 .2 = returna/
m (2 :nat | 0).5(A) € (z: FA). 32/ 2" . = sendy (z/) A
ola’/x] A (S(A)[2'/x]) (")
m (2 nat.S(A) E (z: FA). 32 .2 = receive(z.2/(z)) A
vz (S(A)[z"/x])(2'(2"))

Examples: communication

m Recall the small state language:
m induced by the 1-location state theory
mreceive: 1 —nat , send:nat—1

m Recall the a grammar of session refinements:
m S(A) i=end(A) | l(x:nat | ¢).S(A4) |
2(y < nat).S(A) | S1(B): Sa(A)
m They are defined as operations on predicates, e.g.:
moend(A) € (2: FA). 32 .2 = returna/
m (2 :nat | 0).5(A) € (z: FA). 32/ 2" . = sendy (z/) A
ola’/x] A (S(A)[2'/x]) (")
m (2 nat.S(A) E (z: FA). 32 .2 = receive(z.2/(z)) A
vz (S(A)[z"/x])(2'(2"))

Examples: state

m Recall the small state language:
m induced by the 1-location state theory
m lookup:1—nat , update:nat—1

m Formulas ¢p and ¢g on states (on natural numbers)

Examples: state

m Recall the small state language:
m induced by the 1-location state theory
m lookup:1—nat , update:nat—1

m Formulas ¢p and ¢g on states (on natural numbers)
m The pre- & post-condition spec.:

V,’f.{(.’l’[))-@l"}?/ tA {() \PQ} «
(@ : FA).(Va! Voo mp[2 [T, 04 /20) = Taua(7, 25,74, 1))

Examples: state

m Recall the small state language:

m induced by the 1-location state theory
m lookup:1—nat , update:nat—1

m Formulas ¢p and ¢g on states (on natural numbers)
m The pre- & post-condition spec.:

V,’f.{(.’l’[))-@l"}?/ tA {() \PQ} «

($ FA) VI/ ng 7Tp[//f,ms/zo] — Wau:c(l_j;xmzsaz))

where (for total correctness)
Tauz dZEqu.((f, X0, X1,).
(Hy.x = returny A gpQ)
v (Elm’.x = lookup (z.2'(2)) A X (Z, z, xl,x’(xl))>

Vv (Elx’,x”.x = update,, (z") A X(f, xo,x’,x”)))

Examples: state ® communication

m Recall the combined spec. on state & communication:
VZA{(x0).op}(S(A) > x : A){(z1)-p0}

Examples: state ® communication

m Recall the combined spec. on state & communication:
VZA{(x0).op}(S(A) > x : A){(z1)-p0}
m How well can we represent it in our ref. ty. system?

Examples: state ® communication

m Recall the combined spec. on state & communication:
VZA{(x0).op}(S(A) > x : A){(z1)-p0}
m How well can we represent it in our ref. ty. system?

m Combining underlying state & comm. calculi is easy:
m induced by the tensor of effect theories
m semantics induced similarly (i.e., Ty = (Tro(Valt°® x —))Va'Loc)

Examples: state ® communication

m Recall the combined spec. on state & communication:
VZA{(x0).op}(S(A) > x : A){(z1)-p0}
m How well can we represent it in our ref. ty. system?
m Combining underlying state & comm. calculi is easy:
m induced by the tensor of effect theories
m semantics induced similarly (i.e., Ty = (T70(Valto® x —))Va'Loc)
m Combining refinement specs.:
® not so straightforward, no obvious good combinators

m similarity between ref. specs. and monads

Examples: state ® communication

m Recall the combined spec. on state & communication:
VZA{(x0).op}(S(A) > x : A){(z1)-p0}
m How well can we represent it in our ref. ty. system?

m Combining underlying state & comm. calculi is easy:

m induced by the tensor of effect theories

m semantics induced similarly (i.e., Ty = (T70(Valto® x —))Va'Loc)
m Combining refinement specs.:

® not so straightforward, no obvious good combinators

m similarity between ref. specs. and monads

"V (Ela:’.a; = receive(z.2'(x)) A
ay. (S(a:) — (y: nat).Y)) A X(F, a:o,:rl,x,Y)>

To sum it up

‘A computational language with algebraic effects

|

— ref. types for general effectful specs.
— using algebraic effectful reasoning

C O
Ul

State language Communication language Language X

m For the future:
m allow ref. types in logic?

® combinations of specs. more painlessly
m other algebraic machinery (locality, handlers)
[

extension of simple ty. sys. with dependent refs. fibrationally

