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Today’s Plan

e Problem: Synchrony of algebraic effects

e Solution: Asynchrony through decoupling operation call execution

Ae-calculus

Examples

e Some recent extensions (the higher-order part of the talk's title)

D. Ahman, M. Pretnar. Asynchronous Effects. (POPL 2021)
https://github.com/matijapretnar/aeff
https://github.com/danelahman /aeff-agda

https://github.com/danelahman /higher-order-aeff-agda
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[Eff web interface

https://matija.pretnar.info/aeff/

FEff

Interaction
run waitForStop 2;
let b = let b = let b = (+) (10, 10) in (+) (10, b) in (+) (10, b) in [ F—
(*+) (10, b)

I
run waitForstop 1;

let b = let b = let b = (+) (1, 1) in (+) (1, b) in (+) (1, b) in

applyFun %

applyFun

Inter v

History


https://matija.pretnar.info/aeff/
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Synchrony of algebraic effects

e The conventional operational treatment of algebraic effects

MooV /x]  ~~*  return W
signalling op’s implementation T l interrupting main program

~ op (V,y.M) M[W/y] ~
——

main program’s execution blocked
e M, - handler, runner, top-level default implementation, ...

e In this work, we enable asynchrony for alg. ops. by
e observing that alg. op. calls execute in multiple phases, and by
e providing programming abstractions capturing these phases

e in a self-contained core calculus
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Az-calculus: basics

e Extension of Levy's fine-grain call-by-value A-calculus (FGCBV)

e Types: X,Y :=b | ... | X=>Y!(o,1) |
e Values: V. W = x| ... | fun(x:X)—> M |
e Computations: M N = retunV | letx=Min N |

Typing judgements: [+ VX T M: X! (o)

Small-step operational semantics: M ~~ N
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Ae-Calculus: signals

e Signalling that some op’s implementation needs to be executed

TyCOMP-SIGNAL
op:Asp €0 M=V :Agp M= M:X!(o,0)

M= 1top(V,M): X!(o,1)

where A, is a ground type (prod. and sum of base types)

e Operationally behave like algebraic operations

e letx="Top(V,M)in N~ top(V,let x= Min N)

e But importantly, they do not block their continuations

e MM = fop(V,M)~ Top(V,M)
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Ae-Calculus: interrupts

e Environment interrupting a computation (with some op's result)

TYCOMP-INTERRUPT
M=V :Agp M=M:X!(o,¢)

M= lop(W,M):X!(opl(o,¢))

e Operationally behave like homomorphisms/effect handling

e |op(W,return V) ~> return V
o Lop(W,Top" (V,M)) ~ Top’(V,]op(W,M))

e And they also do not block their continuations

o M~ M = lop(V, M)~ |op(V,M)
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e Allow computation to react to interrupts

Ty-CoMP-PROMISE
t(op) = (o', 1)) Fox:Aop B M (X)1(d,0)
Mp:{X)FN:Y!(o,0)

[+ promise (op x — M) aspin N: Y (0,)

where p:{X) is a promise-typed variable

e Operationally behave like (scoped) algebraic operations (!)
o let x = (promise (op x — M) as p in Mp) in N
~~ promise (op x — Mj) as pin (let x = My in N)

. promise (op x — M) as[p' in top ((V,N) (type safety!)
~ Top ((V, promise (op x — M) as[p in N) (p¢ FV(V))
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Ae-Calculus: interrupt handlers

e Allow computation to react to interrupts

Ty-CoMP-PROMISE
t(op) = (o', 1)) Cox:Aop B M (X)1(d,0)
Mp:{(X)FN:Y!(o,0)

I+ promise (op x — M) aspin N: Y (0,¢)

where p:{X) is a promise-typed variable

e They are triggered by matching interrupts
. }op (W, promise (op x — M) as p in N)
~ let p = M[W/x] in | op (W, N)
e And non-matching interrupts (op # op’) are passed through

o L op (W, promise (op’ x — M) as p in N)
~ promise (op’ x — M) as pin | op (W, N)
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Ae-Calculus: interrupt handlers

e Allow computation to react to interrupts

Ty-CoMP-PROMISE
t(op) = (o', 1)) Fox:Aop B M (X)1(d,0)
Mp:{X)FN:Y!(o,0)

[+ promise (op x — M) aspin N: Y (0,)

where p:{X) is a promise-typed variable

e They also do not block their continuations

o N~ N
EEEEN
promise (op x — M) as pin N
~~ promise (op x — M) as pin N

For type safety, important that p does not get an arbitrary type
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Ae-Calculus: awaiting

e Enables programmers to selectively block execution

TYCOMP-AWAIT
M= Vv:{X Mx: X+ N:Y!(o,0)

[ await V until x)in N: Y ! (o0,¢)

e Operationally behave like pattern-matching (and alg. ops.)
e await (V) until (x)in N ~» N[V/x]

. let y = (await V until (x) in M) in N
~ await V until (x) in (let y = M in N)

e In contrast to earlier gadgets, await blocks its cont.’s execution (!)
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Ax-cCalculus: environment

e We model the environment by running computations in parallel
P,Q := runM | P|[Q [ Top(V,P) | |op(W,P)
(omitting typing judgement, typing rules, and type reduction)

e Small-step operational semantics P ~~ Q: congruence rules +

e run (fop (V, M) ~ top (V. run M)

(Top(V,P))[| @~ Top(V,(P|llop(V,Q)))
Pl (Top(V,Q)) ~ Top(V,(lop(V,P) | Q))

Lop (W, run M) ~~ run (L op (W, M)
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let callWith x =
let callNo = !callCounter in callCounter := !callCounter + 1;
1 call (x, callNo);
promise (result (y, callNo') when callNo = callNo' — return {y)) as resultProm in
return (fun () — await resultProm until {resultValue) in return resultValue)
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Example: remote function calls

e Client

let callWith x =
let callNo = !callCounter in callCounter := !callCounter + 1;
1 call (x, callNo);
promise (result (y, callNo') when callNo = callNo' — return {y)) as resultProm in
return (fun () — await resultProm until {resultValue) in return resultValue)

e Server

let server f =
let rec loop () =
promise (call (x, callNo) — lety = f x in 1 result (y, callNo); loop ()) as p in
return p
in loop ()

e Shortcomings (fixes for those later in the talk)
e Necessitates general recursion in the core calculus
e No way to send the function f from client to server

e Subsequent calls are executed sequentially on the server
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Example: preemptive multi-threading

e At the core of our approach is the following recursive definition
let rec waitForStop () =
promise (stop - +—

promise (go - — return {())) as p in (await p until {_) in waitForStop ())
) as p' in return p'

e first wait for stop interrupt, but do not block execution
e next wait for go interrupt, and block execution

e repeat the cycle

e To initiate preemtive behaviour for some comp, run the composite
waitForStop (); comp

e 0Op. sem. propagates promises out, and wraps them around comp

e Note: No need to access the cont. (of comp) in waitForStop (!)
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Other examples (see paper/prototype)

Algebraic operation calls (special case of remote function calls)

Multi-party web application

(Simulating) cancellations of remote function calls

Parallel variant of runners of algebraic effects

Non-blocking post-processing of promised values
promise (op x +— original_interrupt_handler) as p in

processop p with ({is) +— filter (fun i — i > 0) is) as q in
processop q with ({(jsy — fold (funjj' — j*j') 1js) asrin
processop r with ((k) — 1 productOfPositiveElements k) as _ in

where

processop p with ({(x) +— comp) as q in cont

promise (op - — await p until (x) in let y = comp in return {y)) as q in cont
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e Solution: reinstallable interrupt handlers

Ty-CoMP-REPROMISE
Fox: Agp, 1:1 = OO (P, {op > (0/,)}) = M:(X)!(d,0)

(o,/) £ ¢ (op) Cp: XD N:Y!(o,)

I+ promise (op x [ — M)aspin N:Y!(o,¢)

e Operationally only difference in triggering int. handlers
o L op (W, promise (op x r — M) as pin N)
~ let p = M[W/x,
(fun _— promise (op x r — M) as p in return p)/r |
in Jop(W,N)



S1: general recursion in the core calculus

e Used in almost all examples for reinstalling interrupt handlers

e Solution: reinstallable interrupt handlers

Ty-CoMP-REPROMISE
Fox: Agp, 1:1 = O (F, {op > (0/,)}) = M:(X)!(d,0)

(o',/) £ ¢ (op) Cp: XD N:Y! (o)

I+ promise (op x [r — M)aspin N:Y!(o,¢)

e For example, the preemptive multithreading now becomes

let waitForStop () =
promise (stop - r +—
promise (go - - — return {())) as p in (await p until (_) in r ())
) as p' in return p'
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S$2: signal/interrupt payloads ground-typed

e E.g., cannot send functions for remote execution

e (need to be able to propagate payloads past binders in promises)

e Solution: off-the-shelf Fitch-style modal [X]-type (Clouston et al.)

X = ... | [X] Asp 1= ground types | [X]
TYVAL-VARIABLE Ty VAL-BOX
X is mobile v fih¢ T’ rLi-Vv:X
Cox: X, M= x: X F=[Vv]:[X]

TyComMP-UNBOX
M= V:[X] Mx:XFM:Y!(o,.)

[ unbox V as [x] in M : Y (0,¢)

e Gives us type-safe higher-order payloads for signals/interrupts
o I,p: (X)) V:Agp = M= V:Ag,
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S$3: no dynamic process/thread creation

e E.g., remote function calls have to be executed sequentially

e (need to propagate spawned procs. past binders in promises)

Solution: type safe spawn via modal types

TYCOMP-SPAWN
Fi-M:11 (0,0 N N:X!(o,0)

I+ spawn (M, N) : X ! (o0,¢)

Operationally propagates outwards (like scoped alg. op.)
e let x = spawn (My, M) in N ~> spawn (M, let x = My in N)

e also propagates through promises, where fif§ provides type-safety

Eventually gives rise to a new parallel process
e run (spawn (M, N)) ~» run M || run N

Does not block its continuation



S$3: no dynamic process/thread creation

e E.g., remote function calls have to be executed sequentially

e (need to propagate spawned procs. past binders in promises)

e Solution: type safe spawn via modal types

TyYCOMP-SPAWN
Fi-M:11(0,0) N N:X!(o,2)

[ spawn (M, N) : X ! (0,¢)

e Remote function calls can now execute in parallel

let server f =
promise (call (x, callNo) r —
spawn (let y = f x in 1 result (y, callNo),

r())

) as p in return p
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e Ongoing work on
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Conclusion
e A core calculus for asynchronous algebraic effects
e based on decoupling the execution of alg. operation calls

e accommodates both cooperative and preemptive behaviour

e Ongoing work on
e )\:'s denotational semantics

e more efficient variant of the operational semantics

e Same algebraic & modal ideas also useful in setting without ||

async Maspin N
with

async (Top(V,M))aspin N ~» top(V,async MaspinN)
async Maspin(top(V,N)) ~ top(V,asyncMaspinN)



Appendix



Az-calculus: effect annotations

e The effect annotations (o, ¢) are drawn from sets O and /, given by
O ="P([%) |=vZ. Y= (0x2),

where ¥ is the set of all signal /interrupt names

e Note: for meta-theory only, could also have I as a least fixpoint

e O and / come with natural partial orders for subtyping

e The action op | (0,¢) reveals effects of int. handlers for op

oo = [0UOop U (o) = (0.0)
Pl = (0,1) otherwise



Example: (tail res.) alg. operation calls

e Based on the earlier observation
MooV /x]  ~*  return W
signalling op's implementation T l interrupting main program
~ op (V,y.M) M[W/y] ~
e At call site
op (V,y.M)

def

T callyp (V, promise (result,, y — return {y)) as p in
await p until {y) in M)

e At implementation site

promise (callo, x — let y = M,, in return (y)) as p in

await p until {y) in 1 resulty, (y, return ())



Example: guarded interrupt handlers

e In many examples we often write for convenience

promise (op x when guard with r — comp) as p in cont

as a syntactic sugar for the recursively defined interrupt handler

promise (op x r — if guard then comp else r ()) as p in cont

e For well-typedness, important we have comp : (x) instead of comp : X

e In POPL paper, again necessitated gen. rec. in the core calculus



