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Background – dependent types

The Curry-Howard correspondence:

Simple Types ∼ Propositional Logic (Nat, String, . . .)

Dependent Types ∼ Predicate Logic (Σ,Π,=, . . .)

A tiny example: we can use dep. types to express sorted lists

∀ ⇒
` : (List Nat) ` Sorted(`)

def
= Π i :Nat . (0 < i < len `) → (`[i -1] ≤ `[i ])

which in turn could be used for typing sorting functions

∀ ∃ ∧
sort : Π ` : (List Nat) .Σ `′ : (List Nat) .

(
Sorted(`′)× . . .

)
Large examples: CompCert (Coq), miTLS and HACL* (F*), . . .
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Background – computational effects

Examples:

• state, exceptions, divergence, IO, nondeterminism, probability, . . .

Meta-languages and models for comp. effects: based on

• monads (λc, λML, FGCBV) (Moggi; Levy)

JΓ ` M : AKλc : JΓK −→ T JAK

• adjunctions (CBPV, EEC) (Levy; Egger et al.)

JΓ v̀ V : AKCBPV : JΓK −→ JAK JΓ c̀ M : CKCBPV : JΓK −→ U(JCK)

• algebraic presentations (Plotkin and Power)

get : 1 ⇀ S put : S ⇀ 1 (+ equations)



Outline – putting the two together

We investigate the combination of

• dependent types (Π,Σ,V =AW , ...)

• computational effects (state, nondeterminism, IO, ...)

Goals

• tell a mathematically natural story

• use established math. techniques

• cover a wide range of comp. effects

• discover smth. interesting
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Outline – putting the two together

We investigate the combination of

• dependent types (Π,Σ,V =AW , ...)

• computational effects (state, nondeterminism, IO, ...)

Goals

• tell a mathematically natural story (via a clean core calculus)

• use established math. techniques (fibrations and adjunctions)

• cover a wide range of comp. effects (alg. effects, continuations)

• discover smth. interesting (using handlers to reason about effects)

Two guiding problems

• effectful programs in types (e.g., get and put in types)

• typing of effectful programs (e.g., sequential composition)



Effectful programs in types
(type-dependency in the presence of effects)



Effectful programs in types

Q: Should we allow situations such as Sorted[ receive(y .M)/` ]?

A1: In this work, we say not directly

• types should only depend on static information about effects

• allow dependency on effectful comps. via analysing thunks

A2: Various people are also looking at the direct case

• type-dependency needs to be “homomorphic”

• intuitively,

• need to lift Sorted(`) to Sorted†(c), where c :T (List Chr)

Sorted†(receive(y . return y)) = 〈receive〉(y .Sorted(y))

• for this Sorted needs to be a T-algebra

• (cf. recent papers by Pédrot and Tabareau; Bowman et al.)
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Effectful programs in types

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

• value types Γ ` A (MLTT + thunks + ...)

• computation types Γ ` C (dep. typed CBPV/EEC)

• where Γ contains only value variables x1 :A1, . . . , xn :An

Could have also considered Moggi’s λML or Levy’s FGCBV

• building on CBPV/EEC gives a more general story

• especially for the treatment of sequential composition

• and also for (Idris-style parameterised) dependent effect-typing
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Typing of effectful programs
(e.g., sequential composition)



Assigning types to effectful programs

The problem: The standard typing rule for seq. composition

Γ c̀ M : F A Γ, x :A c̀ N : C (x)

Γ c̀ M to x :A in N : C (x)

is not correct any more because it potentially allows

x ∈ FV (C )

in the conclusion



Assigning types to effectful programs

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in C : [Levy’04]

Γ c̀ M : F A Γ ` C Γ, x :A c̀ N : C

Γ c̀ M to x :A in N : C

But: Sometimes it is useful if C can depend on x!

• say we consider

fopen
(
return true, return false

)
to x :Bool in N

• then it would be natural to let C depend on x , e.g.,

x :Bool ` C (x)
def
= if x then “allow fread, fwrite, and fclose”

else “allow fopen”

(needs more expressive comp. types than in the core calculus)
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Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

Γ c̀ M to x :A in N : M to x :A in C

But: Then comp. types would be singleton-like!?!

Option 3: In the monadic metalanguage λML, one could try

Γ ` M : T A Γ, x :A ` N : T B(x)

Γ ` M to x :A in N : T (Σx : A.B)

But: What makes this a principled solution? Why is it correct?
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Assigning types to effectful programs

Aim: To fix the typing rule of sequential composition

Our solution: We draw inspiration from algebraic effects

• and combine this with restricting C in seq. comp. (Option 1)

E.g., consider the non-deterministic prog.
(

for x :Nat c̀ N : C (x)
)

M
def
= choose

(
return 4, return 2

)
to x :Nat in N

After making the non-det. choice, this program evaluates as either

N[4/x ] : C [4/x ] or N[2/x ] : C [2/x ]

Idea: M denotes an element of the coproduct of algebras

C [4/x ] + C [2/x ]
def
= F

(
U
(
C [4/x ]

)
+ U

(
C [2/x ]

))/
≡

which we generalise to A-indexed coproducts, i.e., a comp. Σ-type
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Putting these ideas together
(eMLTT: a core dep.-typed calculus with comp. effects)



eMLTT – value and comp. types

Value types: MLTT + thunks + . . .

A,B ::= Nat | 1 | 0 | Π x :A .B | Σ x :A .B | V =AW | UC | . . .

• UC is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC’s comp. types

C ,D ::= F A | Π x :A .C | Σ x :A .C

• F A is the type of computations returning values of type A

• Π x :A .C is the type of dependent effectful functions

• generalises CBPV/EEC’s comp. types A→ C and C × D

• Σ x :A .C is the type of dep. pairs of values and effectful comps.

• captures the intuition about seq. comp. and coprods. of algebras

• generalises EEC’s comp. types !A⊗ C and C ⊕ D
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eMLTT – value and comp. terms

Value terms: MLTT + thunks + ...

V ,W ::= x | zero | succV | . . . | thunk M | . . .

• equational theory based on intensional MLTT

Comp. terms: dep.-typed version of CBPV/EEC’s comp. terms

M,N ::= force V
| returnV
| M to x :A in N
| λ x :A .M
| MV
| 〈V ,M〉 (comp. Σ intro.)
| M to 〈x :A, z :C 〉 in K (comp. Σ elim.)

But: Value and comp. terms alone do not suffice, as in EEC!
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eMLTT – homomorphism terms

Note: We need to define K in such a way that the intended
left-to-right evaluation order is preserved, e.g., consider

Γ c̀ 〈V ,M〉 to 〈x :A, z :C 〉 in K = K [V /x ,M/z ] : D

Homomorphism terms: dep.-typed version of EEC’s linear terms

K , L ::= z (linear comp. vars.)
| K to x :A in M
| λ x :A .K
| KV
| 〈V ,K 〉 (comp. Σ intro.)
| K to 〈x :A, z :C 〉 in L (comp. Σ elim.)

Typing judgments:

• Γ v̀ V : A

• Γ c̀ M : C

• Γ | z :C h̀ K : D (linear in z ; comp. bound to z happens first)
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eMLTT – typing sequential composition

• We can then account for type-dependency in seq. comp. as

Γ c̀ M : F A Γ ` Σ x :A .C (x)

Γ, x :A c̀ N : C (x)

Γ, x :A c̀ 〈x ,N〉 : Σ x :A .C (x)

Γ c̀ M to x :A in 〈x ,N〉 : Σ x :A .C (x)

• As a bonus, the comp. Σ-type can also be used to explain Idris’s

Γ v̀ ε1 : Effect Γ ` A Γ v̀ ε2 : A→ Effect
Γ ` T ε1 A ε2

in terms of standard parameterised effect-typing as

T ε1 A ε2
def
= Uε1(Σ x :A .Fε2 x 1)

and thus naturally accommodate examples like

fopen
(
return true, return false

)
to x :Bool in N
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Fibred adjunction models
(categorical semantics of eMLTT)



Fibred adjunction models – value part

Given by a split closed comprehension category p, as in

V

p a

  

{−}a

~~

⊥ C

B

1

OO

allowing us to define a partial interpretation fun. J−K, that maps:

• a context Γ to and object JΓK in B, with

• J�K def
= 1

• JΓ, x :AK def
= {JΓ;AK} (if x 6∈ Vars(Γ) and JΓ;AK is defined)

• a context Γ and a value type A to an object JΓ;AK in VJΓK

• a context Γ and a value term V to JΓ;V K : 1JΓK −→ A in VJΓK



Fibred adjunction models – value part

Given by a split closed comprehension category p, as in

V

p a

  

{−}a

~~

⊥ C

B

1

OO

such that

• p has split fibred strong colimits of shape 0 and 2 [Jacobs’99]

• (in thesis, also Jacobs-style characterisation for arbitrary shapes)

• p has weak split fibred strong natural numbers

• (axiomatisation is given in the style of fibrational induction)

• p has split intensional propositional equality

• (currently very synthetic ax., would like a weak form of adjoints)



Fibred adjunction models – effects part

Given by a split fibration q and a split fib. adjunction F a U , as in

V

p a

  

{−}a

~~

F

++
⊥ C
U

kk

qooB

1

OO

we extend the partial interpretation fun. J−K so that it maps:

• a ctx. Γ and a comp. type C to an object JΓ;CK in CJΓK

• a ctx. Γ and a comp. term M to JΓ;MK : 1JΓK −→ U(C ) in VJΓK

• a ctx. Γ, a comp. var. z , a comp. type C , and a hom. term K to

JΓ; z :C ;KK : JΓ;CK −→ D in CJΓK



Fibred adjunction models – effects part

Given by a split fibration q and a split fib. adjunction F a U , as in

V

p a

  

{−}a

~~

F

++
⊥ C
U

kk

qooB

1

OO

such that

• q has split dependent p-products (comp. Π-type; r. adj. to wk.)

• q has split dependent p-coproducts (comp. Σ-type; l. adj. to wk.)

and to account for the full calculus presented in the thesis,

• q admits a weak form of fib. enrich. in p (hom. function type ()



Fibred adjunction models – correctness

Theorem (Soundness):

• If Γ ` C , then JΓ;CK ∈ CJΓK

• If Γ c̀ M : C , then JΓ;MK : 1JΓK −→ U(JΓ;CK)

• If Γ | z :C h̀ K : D, then JΓ; z :C ;KK : JΓ;CK −→ JΓ;DK

• If Γ ` C = D, then JΓ;CK = JΓ;DK ∈ CJΓK

• . . .

Theorem (Classifying model):

• The well-formed syntax of eMLTT forms a fib. adjunction model.

Theorem (Completeness):

• If two types or terms are equal in all fibred adjunction models,

then they are also equal in the equational theory of eMLTT.
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Examples of fibred adjunction models

Example 1 (identity adjunctions):

• sound as long as no actual comp. effects in the calculus

Example 2 (simple fibrations from enriched adj. models of EEC):

• given an adj. model of EEC F a U : C −→ V (V a CCC, . . . ),

we can lift it to simple fibrations F̂ a Û : s(V, C) −→ s(V)

where
sV,C : s(V, C) −→ V

is defined as

sV,C

(
X ∈ V , C ∈ C

)
def
= X

sV,C

(
f : X −→ Y , h : X ⊗ C −→ D

)
def
= f : sV,C(X ,C ) −→ sV,C(Y ,D)

• doesn’t support any real type dependency (constant families)
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Examples of fibred adjunction models

Example 3 (families fibrations and lifting of adjunctions):

• given a suitable adjunction FD a UD : D −→ Set,

we can lift it to F̂D a ÛD : Fam(D) −→ Fam(Set)

between
famSet : Fam(Set) −→ Set

famD : Fam(D) −→ Set

• resulting in

• JΓ;AK = (JΓK, JAK) ∈ Fam(Set) (JΓK ∈ Set, JAK ∈ JΓK −→ Set)

• JΓ;CK = (JΓK, JCK) ∈ Fam(D) (JCK ∈ JΓK −→ D)

• examples

• FT a UT : SetT −→ Set

• (−)× S a (−)S : Set −→ Set

• R(−) a R(−) : Setop −→ Set



Examples of fibred adjunction models

Example 4 (continuous families and CPO-enriched monads):

• given the EM-adjunction FT a UT : CPOT −→ CPO,

we can lift it to F̂D a ÛD : CFam(CPOT) −→ CFam(CPO)

between
cfamCPO : CFam(CPO) −→ CPO

cfamCPOT : CFam(CPOT) −→ CPO

• resulting in

• (JΓK, JAK) ∈ CFam(CPO) (JΓK ∈ CPO, JAK ∈ JΓK −→ CPOEP)

• (JΓK, JCK) ∈ CFam(CPOT) (JCK ∈ JΓK −→ (CPOT)EP)

• if T supports a least zero-ary op., then it also models recursion

M ::= . . . | µ x :UC .M
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Examples of fibred adjunction models

Example 5 (EM-resolutions of split fibred monads):

• given a split fibred monad T = (T, η, µ) on p, i.e.,

V T //

p

��

V

p

��
and p

(
ηA
)

= idp(A) p
(
µA

)
= idp(A)

B

• we consider models based on the EM-resolution of T

V

p

��

FT

**
⊥ VT

pT

��

UT

ii

where
(
A ∈ V , α :T (A) −→ A

)
∈ VT

B
• and show that three familiar results hold for this situation



Examples of fibred adjunction models

Example 5 (EM-resolutions of split fibred monads):

• Theorem 1: If p supports Π-types, then pT also supports Π-types

ΠT
A(B, β)

def
=
(
ΠA(B), βΠT

A

)
• Prop.: If p supports Σ-types, then T has a dependent strength

σA : ΣA ◦ T −→ T ◦ ΣA (A ∈ V)

• Theorem 2: If σA are natural isos., then pT supports Σ-types

ΣT
A(B, β)

def
=
(
ΣA(B), βΣT

A

)
• Theorem 3: If p supports Σ-types and pT has split fibred

reflexive coequalizers, then pT also supports Σ-types

ΣT
A(B, β)

def
= FT

(
ΣA(B)

)/
≡
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Algebraic effects
(operations and equations)



Algebraic effects – ops. and eqs.
Fibred effect theories Teff:

• signatures of dependently typed operation symbols

· ` I xi : I ` O I and O are pure value types

op : (xi : I ) ⇀ O

• equipped with equations on derivable effect terms

In eMLTT:
M ::= . . . | opCV (x .M)

General algebraicity equations (in addition to eff. th. eqs.):

Γ v̀ V : I Γ, x :O[V /xi ] c̀ M : C Γ | z :C h̀ K : D

Γ c̀ K [op
C
V (x .M)/z ] = op

D
V

(
x .K [M/z ]

)
: D

(op : (xi : I ) ⇀ O)

Sound semantics: Based on families fibrations and Law. theories

• p : Fam(Set) −→ Set and q : Fam(Mod(LTeff
,Set)) −→ Set
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Algebraic effects – examples

Example 1 (interactive IO):

• read : 1 ⇀ Chr (Chr
def
= 1 + . . .+ 1)

write : Chr ⇀ 1

• no equations

Example 2 (global state with location-dependent store type):

• � ` Loc

` :Loc ` Val

� v̀ isDecLoc : Π ` :Loc .Π `′ :Loc . (` =Loc `
′) + (` =Loc `

′ → 0)

• get : (` :Loc) ⇀ Val

put : (Σ ` :Loc .Val) ⇀ 1

• five equations (two of them branching on isDecLoc)

Example 3 (dep. typed update monads T X
def
= Πs:S .P s × X )



Algebraic effects – examples

Example 1 (interactive IO):

• read : 1 ⇀ Chr (Chr
def
= 1 + . . .+ 1)

write : Chr ⇀ 1

• no equations

Example 2 (global state with location-dependent store type):

• � ` Loc

` :Loc ` Val

� v̀ isDecLoc : Π ` :Loc .Π `′ :Loc . (` =Loc `
′) + (` =Loc `

′ → 0)

• get : (` :Loc) ⇀ Val

put : (Σ ` :Loc .Val) ⇀ 1

• five equations (two of them branching on isDecLoc)

Example 3 (dep. typed update monads T X
def
= Πs:S .P s × X )



Algebraic effects – examples

Example 1 (interactive IO):

• read : 1 ⇀ Chr (Chr
def
= 1 + . . .+ 1)

write : Chr ⇀ 1

• no equations

Example 2 (global state with location-dependent store type):

• � ` Loc

` :Loc ` Val

� v̀ isDecLoc : Π ` :Loc .Π `′ :Loc . (` =Loc `
′) + (` =Loc `

′ → 0)

• get : (` :Loc) ⇀ Val

put : (Σ ` :Loc .Val) ⇀ 1

• five equations (two of them branching on isDecLoc)

Example 3 (dep. typed update monads T X
def
= Πs:S .P s × X )



Handlers of algebraic effects
(for programming and extrinsic reasoning)



Handlers of alg. effects – for programming

Idea: Generalisation of exception handlers [Plotkin,Pretnar’09]

Handler ∼ Algebra and Handling ∼ Homomorphism

Usual term-level presentation:

Γ c̀ M handled with {opxv (xk) 7→ Nop}op∈Teff
to y :A inC Nret : C

satisfying

(returnV ) handled with {...}op∈Teff
to y :A in Nret = Nret[V /x ]

(op
C
V (x .M)) handled with {...}op∈Teff

to y :A in Nret = Nop[V /xv ][.../xk ]

Example use case for programming:

• write your programs using alg. ops. (e.g., get and put)

• use handlers to provide fit-for-purpose impl. (e.g., S → X × S)
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Handlers of alg. effects – for reasoning

Idea: Using a derived handle-into-values handling construct

M handled with {opxv (xk) 7→ Vop}op∈Teff
to y :A inB Vret

we can define natural predicates (essentially, dependent types)

Γ v̀ P : UFA→ U
by
• equipping a universe U with an algebra for Teff (sort of), and

• using the above handle-into-values construct to define P

Note 1: P (thunkM) computes a proof obligation for M

Note 2: Formally, this is done in an extension of eMLTT with

• a universe U closed under Nat, 1, 0, +, Σ, and Π

• a type-based treatment of handlers C ::= . . . | 〈A;
−→
Vop;
−−→
Weq〉

• function extensionality (actually, it’s a bit more extensional)
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Handlers of alg. effects – for reasoning

Example 1 (Evaluation Logic style modalities):

• Given a predicate P : A→ U on return values,

we define a predicate ♦P : UFA→ U on IO-computations as

♦P
def
= λ x :UFA . (force x) handled with {...}op∈TIO

to y :A inU P y

using the handler given by

Vread
def
= λ x : (Σ xv :1 .Chr→ U) . Σ̂ y :El(Ĉhr) . (snd x) y

Vwrite
def
= λ x : (Σ xv :Chr . 1→ U) . (snd x) ?

• ♦P corresponds to Evaluation Logic’s possibility modality

♦P
(
thunk (read(x . write′e′(returnV )))

)
= Σ̂ x :El(Ĉhr) .P V

• To get the necessity modality �P, just use Π̂ x :El(Ĉhr) in Vread
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Handlers of alg. effects – for reasoning

Example 2 (Dijkstra’s weakest precondition semantics for state):

• Given a postcondition on return values and final states

Q : A→ S → U (S
def
= Π ` :Loc .Val)

we define a precondition for stateful comps. on initial states

wpQ : UFA→ S → U
by

1) handling the given comp. into a state-passing function using

Vget,Vput on S → (U × S) and Vret “=” Q

2) feeding in the initial state; and 3) projecting out U

• Theorem: wpQ satisfies expected properties of WPs, e.g.,

wpQ

(
thunk (returnV )

)
= λ xS :S .Q V xS

wpQ

(
thunk (put〈`,V 〉(M))

)
= λ xS :S .wpQ (thunkM) (xS [` 7→ V ])
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Handlers of alg. effects – for reasoning

Example 3 (Patterns of allowed (IO-)effects):

• Assuming an inductive type of IO-protocols, given by

e : Protocol r : (Chr→ Protocol)→ Protocol

w : (Chr→ U)→ Protocol→ Protocol

and potentially also by ∧, ∨, . . .

• We can define a rel. between comps. and protocols as follows:

Allowed : UFA→ Protocol→ U

by handling the given computation using

Vread,Vwrite on Protocol→ U
where

Vread 〈 ,Vrk〉 (r Pr′)
def
= Π̂ x :El(Ĉhr) . (Vrk x) (Pr′ x)

Vwrite 〈V ,Vwk〉 (w P Pr′)
def
= Σ̂ x :El(P V ) .Vwk ? Pr′

def
= 0̂



Handlers of alg. effects – for reasoning

Example 3 (Patterns of allowed (IO-)effects):

• Assuming an inductive type of IO-protocols, given by

e : Protocol r : (Chr→ Protocol)→ Protocol

w : (Chr→ U)→ Protocol→ Protocol

and potentially also by ∧, ∨, . . .

• We can define a rel. between comps. and protocols as follows:

Allowed : UFA→ Protocol→ U

by handling the given computation using

Vread,Vwrite on Protocol→ U
where

Vread 〈 ,Vrk〉 (r Pr′)
def
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Conclusion

At a high-level, the presented work was about combining

dependent types and computational effects

In particular, you saw

• a clean core calculus of dependent types and comp. effects

• a natural category-theoretic semantics

• alg. effects and handlers, in particular, for reasoning using

• Evaluation Logic style modalities

• Dijkstra’s weakest precondition semantics for state

• patterns of allowed (IO-)effects

Some items of future work:

• uniform account of the various handler-defined predicates

• more expressive comp. types (par. adjunctions, Dijkstra monads)
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