Normalization by evaluation,
algebraic theories,
computational effects

Danel Ahman

Hughes Hall
University of Cambridge

An impure higher-order program

function foo f =
let x = read() 1in
let y = f (proje (x , one)) 1n
let z = return y 1n
write zero ; return z

An impure higher-order program

reading from a
~~ memory cell

function foo f =~
let x = read() in

let y = f (proje (x , one)) 1n
let z = return y 1n

write zero ; return z
P

writing to a
memory cell

An impure higher-order program

higher-order ____
argument

reading from a

\% s
function foo f =~

let x = read()Lin
let y = f (proje (x , one)) 1n
let z = return y 1n

write zero ; return z
P

writing to a
memory cell

How to reason about these effects?

Computational effects

® Examples: global state, input/output, choice, ...

Computational effects

® Examples: global state, input/output, choice, ...
o ﬁPIotkin,Power '02%

® VWe model them using algebraic th\éories T=(2,E)

operations 2. + equations E

Computational effects

® Examples: global state, input/output, choice, ...

i

//,. Plotkin, Power '02

® VWe model them using algebraic th\e/ories T=(2,E)

operations 2 + equations E
read X)/ Writezero (Writeone X) = Writeone X
Wl"itezero X Writeone (Writezero X) — Writezero X

Writeone X Writezero (I’ead X)’) — Writezero X

How to reason about impure programs

based on these algebraic effect theories!?

A fine-grain call-by-value

intermediate language
Levy, Power, Thielecke '03

® Typesignature ocr=al|lloxo|loc—0]..

® Value terms
FI_U‘/lIO'l Fl_v‘/QIO'Q F"vVIO'1><O'2

''e:0l"H,x:0 ', (Vi, Vo) 01 X 09 ', (V) oy

'Nz:ob, N:T
I'Fy, Az :0N:o—T

® Producer terms

'y M:io Dix:iobk, N:T ', V:o
'k, Mtox. N : 7 ', returnV : o

I'=,Vie—-7 I',W:o
', VW or

Extending algebraic theories
to the intermediate language

Extending algebraic theories
to the intermediate language

® Every operation in 2 defines a producer term

|; iVa P F, Mo
; & | T I_p Write(one)a(M) 2o |

Tk, My:o T ‘“‘
‘ F|— read (MO Ml) : jf |

Extending algebraic theories
to the intermediate language

® Every operation in 2 defines a producer term

' LE, Myt o Fl—pM1:0 ‘ai
- I'), read, (Mo, M

f | I', Wl‘ite(one)g

):o |

® Extend the usual beta-eta equations

eioby M:7 ', Vo ', Vo —r1
', (e o M)V = M[V/x]: T ', V=>XM:0(Vx):0—=71

with all the equations in E

| Th, Mo

{
f

| ' Fp Write(zero)o (WIit€(one)e M) = Write(oneye M : 0 |

s this representation of

algebraic theories correct!

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory
f |

they are provably equal in the extended language

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

v ff

they are provably equal in the extended language

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

v ff

they are provably equal in the extended Inguage

'Tricky!

Provable equality

function foo f =
let x = read() 1in
let y = f (projo (x , one)) 1n
let z = return y 1in
write zero ; return z

is provably equal to

function foo f =
let x = read() 1in
let z = f x 1n
write zero ; return z

How to decide provable equality?

Normalization

® So we want do decide when terms are provably equal

® We do this by computing their normal forms

satisfying:

Theorem:
Given two provably equal terms in the language,

they have canonical normal forms

Normalization by evaluation

® A semantic notion of normalization

® Berger & Schwichtenberg '91, Filinski 'O1, Fiore et.al.'02, Abel et.al.'07

® Ve define an inverse of interpretation called reification

Interpret

S
-
N Y
~. |
X

denotational semantics
normal forms¢~ g

nf = reify O interpret

Normalization by evaluation

® A semantic notion of normalization

® Berger & Schwichtenberg '91, Filinski 'O1, Fiore et.al.'02, Abel et.al.'07

® Ve define an inverse of interpretation called reification

Interpret

Sy
N
. A
~.
X

2 denot»tional semantics

W

Presheaf model |}
with
a strong

I

| Kripke logical relations |~

e = —_

nf = reify O interpret |

Why a residualizing interpretation!?

® We need to preserve the order of (possible) effects!

Why a residualizing interpretation!?

® We need to preserve the order of (possible) effects!

, . the reading effect
function foo f = ’

let x = read()“in

~ 2.possible
An __—" unknown effects

let v = f (projo (x , one)) in
let z = return y 1n

write zero ; return z
P

- 3. the writing effect

The main normalization results

Provably equal normal forms

nf = reify O interpret

Theorem:
Given a term t in the language,

nf t is provably equal to t in the language

Canonical normal forms

nf = reify O interpret
Theorem:
Given two provably equal terms t and u in the language,

nf t and nf u are equivalent up to the algebraic theory

(equal if E is empty)

This representation is correct!

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory(

v iff v

they are provably equal in the extended language

Conclusions and future work

® We have justified the correctness of extending algebraic
theories to a call-by-value intermediate language

® The normalization algorithm and proofs have been
rigorously formalized in Agda

® =~ 6000 lines of formal proofs

® Future investigations
® sum types and natural numbers

® parametrized and second-order algebraic theories

