Normalization by evaluation, algebraic theories, computational effects

Danel Ahman

Hughes Hall University of Cambridge

An impure higher-order program

function foo f = let x = read() in let y = f (proj₀ (x , one)) in let z = return y in write zero ; return z

How to reason about these effects?

Computational effects

• Examples: global state, input/output, choice, ...

Computational effects

• Examples: global state, input/output, choice, ...

• We model them using <u>algebraic theories</u> $T = (\Sigma, E)$ <u>operations</u> Σ + <u>equations</u> E

Plotkin, Power '02

Computational effects

• Examples: global state, input/output, choice, ...

• We model them using <u>algebraic theories</u> $T = (\Sigma, E)$

operations Σ +equationsEread x ywrite_{zero} (write_{one} x) = write_{one} xwrite_{zero} xwrite_{one} (write_{zero} x) = write_{zero} xwrite_one xwrite_{zero} (read x y) = write_{zero} x

Plotkin, Power '02

How to reason about impure programs based on these algebraic effect theories?

A fine-grain call-by-value intermediate language

Levy, Power, Thielecke '03

Type signature $\sigma ::= \alpha \,|\, 1 \,|\, \sigma \times \sigma \,|\, \sigma \rightharpoonup \sigma \,|\, \dots$

Value terms

 $\underline{\Gamma \vdash_v V_1 : \sigma_1 \quad \Gamma \vdash_v V_2 : \sigma_2} \qquad \underline{\Gamma \vdash_v V : \sigma_1 \times \sigma_2}$ $\overline{\Gamma, x: \sigma, \Gamma' \vdash_v x: \sigma} \qquad \overline{\Gamma \vdash_v \langle V_1, V_2 \rangle: \sigma_1 \times \sigma_2} \qquad \overline{\Gamma \vdash_v \pi_i(V): \sigma_i}$

$$\frac{\Gamma, x : \sigma \vdash_p N : \tau}{\Gamma \vdash_v \lambda x : \sigma \cdot N : \sigma \rightharpoonup \tau}$$

Producer terms

$$\frac{\Gamma \vdash_{p} M : \sigma \quad \Gamma, x : \sigma \vdash_{p} N : \tau}{\Gamma \vdash_{p} M \operatorname{to} x.N : \tau} \qquad \qquad \frac{\Gamma \vdash_{v} V : \sigma}{\Gamma \vdash_{p} \operatorname{return} V : \sigma}$$

$$\frac{\Gamma \vdash_v V : \sigma \rightharpoonup \tau \quad \Gamma \vdash_v W : \sigma}{\Gamma \vdash_p VW : \tau}$$

Extending algebraic theories to the intermediate language

• Every operation in Σ defines a producer term

 $\frac{\Gamma \vdash_p M_0 : \sigma \quad \Gamma \vdash_p M_1 : \sigma}{\Gamma \vdash_p \operatorname{read}_{\sigma}(M_0, M_1) : \sigma}$

 $\frac{\Gamma \vdash_p M : \sigma}{\Gamma \vdash_p \operatorname{write}_{(zero)\sigma}(M) : \sigma}$

 $\Gamma \vdash_p M : \sigma$ $\Gamma \vdash_{p} \operatorname{write}_{(one)\sigma}(M) : \sigma$

• Extend the usual beta-eta equations

 $\frac{\Gamma, x : \sigma \vdash_p M : \tau \quad \Gamma \vdash_v V : \sigma}{\Gamma \vdash_p (\lambda x : \sigma.M) V \equiv M[V/x] : \tau} \qquad \qquad \overline{\Gamma \vdash_v V}$

$$\Gamma \vdash_v V \sigma \rightharpoonup \tau$$
$$\vdash_v V \equiv \lambda x : \sigma.(Vx) : \sigma \rightharpoonup \tau$$

with all the equations in E

 $\frac{\Gamma \vdash_{p} M : \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(zero)\sigma} (\operatorname{write}_{(one)\sigma} M) \equiv \operatorname{write}_{(one)\sigma} M : \sigma}$

Extending algebraic theories to the intermediate language

• Every operation in Σ defines a producer term

$\Gamma \vdash_p M_0 : \sigma$	$\Gamma \vdash_p M_1 : \sigma$
$\Gamma \vdash_p \operatorname{read}_{\sigma}(M_0, M_1) : \sigma$	

 $\frac{\Gamma \vdash_p M : \sigma}{\Gamma \vdash_p \operatorname{write}_{(zero)\sigma}(M) : \sigma}$

$$\frac{\Gamma \vdash_p M : \sigma}{\Gamma \vdash_p \operatorname{write}_{(one)\sigma}(M) : \sigma}$$

• Extend the usual beta-eta equations

 $\frac{\Gamma, x : \sigma \vdash_p M : \tau \quad \Gamma \vdash_v V : \sigma}{\Gamma \vdash_p (\lambda x : \sigma.M) V \equiv M[V/x] : \tau} \qquad \overline{\Gamma \vdash_v V}$

$$\frac{\Gamma \vdash_v V \sigma \rightharpoonup \tau}{\Gamma \vdash_v V \equiv \lambda x : \sigma. (Vx) : \sigma \rightharpoonup \tau}$$

with all the equations in E

 $\frac{\Gamma \vdash_{p} M : \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(zero)\sigma} (\operatorname{write}_{(one)\sigma} M) \equiv \operatorname{write}_{(one)\sigma} M : \sigma}$

Extending algebraic theories to the intermediate language

• Every operation in Σ defines a producer term

$\Gamma \vdash_p M_0 : \sigma$	$\Gamma \vdash_p M_1 : \sigma$
$\Gamma \vdash_p \operatorname{read}_{\sigma}(M_0, M_1) : \sigma$	

$$\frac{\Gamma \vdash_p M : \sigma}{\vdash \operatorname{write}(M) : \sigma}$$

 $\frac{\Gamma}{\Gamma \vdash_p \operatorname{write}_{(zero)\sigma}(M) : \sigma}$

$$\frac{\Gamma \vdash_p M : \sigma}{\Gamma \vdash_p \operatorname{write}_{(one)\sigma}(M) : \sigma}$$

Extend the usual beta-eta equations

 $\Gamma, x : \sigma \vdash_p M : \tau \quad \Gamma \vdash_v V : \sigma$ $\overline{\Gamma \vdash_p (\lambda x : \sigma. M) V} \equiv M[V/x] : \tau \qquad \overline{\Gamma}$

$$\frac{\Gamma \vdash_v V \sigma \rightharpoonup \tau}{\vdash_v V \equiv \lambda x : \sigma. (Vx) : \sigma \rightharpoonup \tau}$$

with all the equations in E

 $\Gamma \vdash_p M : \sigma$ $\overline{\Gamma \vdash_{p} \operatorname{write}_{(zero)\sigma} (\operatorname{write}_{(one)\sigma} M) \equiv \operatorname{write}_{(one)\sigma} M : \sigma}$ Is this representation of algebraic theories correct?

Theorem:

Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory representation iff

they are provably equal in the extended language

Theorem:

Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory iff they are provably equal in the extended language

Theorem:

Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory iff Tricky! they are provably equal in the extended language

Provable equality

```
function foo f =
 let x = read() in
  let y = f (proj<sub>0</sub> (x , one)) in
    let z = return y in
     write zero ; return z
              is provably equal to
function foo f =
 let x = read() in
  let 7 = f \times in
     write zero ; return z
```

How to decide provable equality?

Normalization

- So we want do <u>decide when terms are provably equal</u>
- We do this by computing their <u>normal forms</u> satisfying:

Theorem:

Given two provably equal terms in the language,

they have canonical normal forms

Normalization by evaluation

- A semantic notion of normalization
 - Berger & Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07
- We define an inverse of interpretation called reification

nf = reify \circ interpret

Normalization by evaluation

- A semantic notion of normalization
 - Berger & Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07
- We define an inverse of interpretation called reification

Why a residualizing interpretation?

• We need to preserve the order of (possible) effects!

I. the reading effect function foo f = 2. possible let x = read() in unknown effects let y = f (proj₀ (x , one)) in let z = return y in write zero ; return z

- 3. the writing effect

Why a residualizing interpretation?

• We need to preserve the order of (possible) effects!

I. the reading effect function foo f = 2. possible let x = read() in unknown effects **let** $y = f(proj_0 (x, one))$ in **let** z = return y **in** write zero ; return z — 3. the writing effect

The main normalization results

Provably equal normal forms

nf = reify \circ interpret

Theorem:

Given a term <u>t</u> in the language,

<u>**nf**</u> t is provably equal to \underline{t} in the language

Canonical normal forms

nf = reify \circ interpret

Theorem:

Given two provably equal terms \underline{t} and \underline{u} in the language,

<u>nf t</u> and <u>nf u</u> are equivalent up to the algebraic theory

(equal if E is empty)

This representation is correct!

Theorem:

Given two terms in the algebraic effect theory,

, they are provably equal in the algebraic theory \checkmark

iff

 $\stackrel{\scriptstyle\checkmark}{\scriptstyle }$ they are provably equal in the extended language

Conclusions and future work

- We have justified the correctness of extending algebraic theories to a call-by-value intermediate language
- The normalization algorithm and proofs have been rigorously formalized in Agda
 - \approx 6000 lines of formal proofs
- Future investigations
 - sum types and natural numbers
 - parametrized and second-order algebraic theories