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let z = return y 1n
write zero ; return z
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® VWe model them using algebraic th\e/ories T=(2,E)

operations 2 + equations E
read X )/ Writezero (Writeone X) = Writeone X
Wl"itezero X Writeone (Writezero X) — Writezero X

Writeone X Writezero (I’ead X )’) — Writezero X



How to reason about impure programs

based on these algebraic effect theories!?



A fine-grain call-by-value

intermediate language
Levy, Power, Thielecke '03
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® Every operation in 2 defines a producer term
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® Extend the usual beta-eta equations
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Provable equality

function foo f =
let x = read() 1in
let y = f (projo (x , one)) 1n
let z = return y 1in
write zero ; return z

is provably equal to

function foo f =
let x = read() 1in
let z = f x 1n
write zero ; return z



How to decide provable equality?



Normalization

® So we want do decide when terms are provably equal

® We do this by computing their normal forms

satisfying:

Theorem:
Given two provably equal terms in the language,

they have canonical normal forms
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® We need to preserve the order of (possible) effects!



Why a residualizing interpretation!?

® We need to preserve the order of (possible) effects!

, . the reading effect
function foo f = ’

let x = read()“in

~ 2.possible
An __—" unknown effects

let v = f (projo (x , one)) in
let z = return y 1n

write zero ; return z
P

- 3. the writing effect



The main normalization results



Provably equal normal forms

nf = reify O interpret

Theorem:
Given a term t in the language,

nf t is provably equal to t in the language



Canonical normal forms

nf = reify O interpret
Theorem:
Given two provably equal terms t and u in the language,

nf t and nf u are equivalent up to the algebraic theory

(equal if E is empty)



This representation is correct!

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory(

v iff v

they are provably equal in the extended language




Conclusions and future work

® We have justified the correctness of extending algebraic
theories to a call-by-value intermediate language

® The normalization algorithm and proofs have been
rigorously formalized in Agda

® =~ 6000 lines of formal proofs

® Future investigations
® sum types and natural numbers

® parametrized and second-order algebraic theories



