Normalization by evaluation,
 algebraic theories, computational effects

Danel Ahman

Hughes Hall
University of Cambridge

An impure higher-order program

function foo $f=$
let $x=r e a d()$ in
Let $y=f\left(\operatorname{proj}_{0}(x\right.$, one)) in
let $z=r e t u r n y$ in write zero ; return z

An impure higher-order program

reading from a
function foo $f=\quad$ memory cell
Let $x=\operatorname{read}()^{i n}$

Let $y=f(p r o j 0(x, o n e))$ in let $z=r e t u r n y$ in write zero ; return z

An impure higher-order program

higher-order argument
function foo $f=$
let $x=\operatorname{read}()^{\text {in }}$
let $y=f(p r o j o(x, o n e))$ in let $z=$ return y in write zero ; return z

How to reason about these effects?

Computational effects

- Examples: global state, input/output, choice, ...

Computational effects

- Examples: global state, input/output, choice, ...
- We model them using algebraic theories $T=(\Sigma, E)$ operations $\Sigma \quad+\quad$ equations E

Computational effects

- Examples: global state, input/output, choice, ...
- We model them using algebraic theories $T=(\Sigma, E)$
operations Σ
read $x y$
write $_{\text {zero }} X$
write $_{\text {one }} X$
$+\quad$ equations E
write $_{\text {zero }}\left(\right.$ write $\left._{\text {one }} x\right) \equiv$ write $_{\text {one }} X$
write $_{\text {one }}\left(\right.$ write $\left._{\text {zero }} x\right) \equiv$ write $_{\text {zero }} X$
write $_{\text {zero }}(\operatorname{read} x y) \equiv$ write $_{\text {zero }} X$

How to reason about impure programs

 based on these algebraic effect theories?
A fine-grain call-by-value intermediate language

Levy, Power,Thielecke '03

- Type signature

$$
\sigma::=\alpha|1| \sigma \times \sigma|\sigma \rightharpoonup \sigma| \ldots
$$

- Value terms

$$
\begin{aligned}
\overline{\Gamma, x: \sigma, \Gamma^{\prime} \vdash_{v} x: \sigma} \quad & \frac{\Gamma \vdash_{v} V_{1}: \sigma_{1} \quad \Gamma \vdash_{v} V_{2}: \sigma_{2}}{\Gamma \vdash_{v}\left\langle V_{1}, V_{2}\right\rangle: \sigma_{1} \times \sigma_{2}}
\end{aligned} \frac{\Gamma \vdash_{v} V: \sigma_{1} \times \sigma_{2}}{\Gamma \vdash_{v} \pi_{i}(V): \sigma_{i}}
$$

- Producer terms

$$
\begin{array}{cc}
\frac{\Gamma \vdash_{p} M: \sigma}{} \Gamma, x: \sigma \vdash_{p} N: \tau \\
\Gamma \vdash_{p} M \text { to } x \cdot N: \tau & \frac{\Gamma \vdash_{v} V: \sigma}{\Gamma \vdash_{p} \operatorname{return} V: \sigma} \\
\frac{\Gamma \vdash_{v} V: \sigma \rightharpoonup \tau}{\Gamma \vdash_{p} V W: \tau} & \Gamma \vdash_{v} W: \sigma \\
\end{array}
$$

Extending algebraic theories to the intermediate language

- Every operation in Σ defines a producer term
$\frac{\Gamma \vdash_{p} M_{0}: \sigma \quad \Gamma \vdash_{p} M_{1}: \sigma}{\Gamma \vdash_{p} \text { read }\left(M M_{0}, M_{1}\right): \sigma}$

$\frac{\Gamma \vdash_{p} M: \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(\text {one }) \sigma}(M): \sigma}$
- Extend the usual beta-eta equations

with all the equations in E

Extending algebraic theories to the intermediate language

- Every operation in Σ defines a producer term

$$
\frac{\Gamma \vdash_{p} M_{0}: \sigma \quad \Gamma \vdash_{p} M_{1}: \sigma}{\Gamma \vdash_{p} \operatorname{read}_{\sigma}\left(M_{0}, M_{1}\right): \sigma}
$$

$\frac{\Gamma \vdash_{p} M: \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(z e r o) \sigma}(M): \sigma}$
$\frac{\Gamma \vdash_{p} M: \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(o n e) \sigma}(M): \sigma}$

- Extend the usual beta-eta equations

with all the equations in E

Extending algebraic theories to the intermediate language

- Every operation in Σ defines a producer term

$$
\frac{\Gamma \vdash_{p} M_{0}: \sigma \quad \Gamma \vdash_{p} M_{1}: \sigma}{\Gamma \vdash_{p} \operatorname{read}_{\sigma}\left(M_{0}, M_{1}\right): \sigma}
$$

$\frac{\Gamma \vdash_{p} M: \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(z e r o) \sigma}(M): \sigma}$
$\Gamma \vdash_{p} M: \sigma$
$\bar{\Gamma} \vdash_{p}$ write $_{(\text {one }) \sigma}(M): \sigma$

- Extend the usual beta-eta equations

$$
\frac{\Gamma, x: \sigma \vdash_{p} M: \tau \quad \Gamma \vdash_{v} V: \sigma}{\Gamma \vdash_{p}(\lambda x: \sigma \cdot M) V \equiv M[V / x]: \tau} \quad \frac{\Gamma \vdash_{v} V \sigma \rightharpoonup \tau}{\Gamma \vdash_{v} V \equiv \lambda x: \sigma \cdot(V x): \sigma \rightharpoonup \tau}
$$

with all the equations in E

$$
\frac{\Gamma \vdash_{p} M: \sigma}{\Gamma \vdash_{p} \operatorname{write}_{(z e r o) \sigma}\left(\operatorname{write}_{(o n e) \sigma} M\right) \equiv \operatorname{write}_{(o n e) \sigma} M: \sigma}
$$

Is this representation of

algebraic theories correct?

Theorem:

Given two terms in the algebraic effect theory,
they are provably equal in the algebraic theory ${ }_{r}$ iff
\checkmark they are provably equal in the extended language

Theorem:

Given two terms in the algebraic effect theory,
they are provably equal in the algebraic theory ${ }_{k}$
\checkmark they are provably equal in the extended language

Theorem:

Given two terms in the algebraic effect theory,
they are provably equal in the algebraic theory ${ }_{R}$ iff
they are provably equal in the extended language

Provable equality

function foo $f=$
let $x=r e a d()$ in
let $y=f(p r o j o(x, o n e))$ in
let $z=r e t u r n ~ y ~ i n ~$ write zero ; return z is provably equal to
function foo $f=$
let $x=\operatorname{read}()$ in
let $z=f x$ in write zero ; return z

How to decide provable equality?

Normalization

- So we want do decide when terms are provably equal
- We do this by computing their normal forms
satisfying:

Theorem:
Given two provably equal terms in the language,
they have canonical normal forms

Normalization by evaluation

- A semantic notion of normalization
- Berger \& Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07
- We define an inverse of interpretation called reification

denotational semantics
normal forms

$$
\text { nf }=\text { reify } \circ \text { interpret }
$$

Normalization by evaluation

- A semantic notion of normalization
- Berger \& Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07
- We define an inverse of interpretation called reification

Why a residualizing interpretation?

- We need to preserve the order of (possible) effects!

Why a residualizing interpretation?

- We need to preserve the order of (possible) effects!
function foo $f=$
let $x=$ read () in
let $y=f$ (projo $(x$, one $))$ in
let $z=$ return y in
write zero ; return z

The main normalization results

Provably equal normal forms

$$
\text { nf }=\text { reify } \circ \text { interpret }
$$

Theorem:

Given a term \underline{t} in the language,
$\underline{n f t}$ is provably equal to t in the language

Canonical normal forms

$$
\text { nf }=\text { reify } \circ \text { interpret }
$$

Theorem:
Given two provably equal terms \underline{t} and \underline{u} in the language,
$\underline{\mathrm{nf} t}$ and $\underline{\mathrm{nf} u}$ are equivalent up to the algebraic theory

(equal if E is empty)

This representation is correct!

Theorem:
Given two terms in the algebraic effect theory,
they are provably equal in the algebraic theory
${ }$ they are provably equal in the extended language

Conclusions and future work

- We have justified the correctness of extending algebraic theories to a call-by-value intermediate language
- The normalization algorithm and proofs have been rigorously formalized in Agda
- ≈ 6000 lines of formal proofs
- Future investigations
- sum types and natural numbers
- parametrized and second-order algebraic theories

