
Normalization by evaluation,
algebraic theories,

computational effects

Danel Ahman

Hughes Hall
University of Cambridge

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

An impure higher-order program

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

reading from a
memory cell

writing to a
memory cell

An impure higher-order program

An impure higher-order program

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

higher-order
argument reading from a

memory cell

writing to a
memory cell

How to reason about these effects?

Computational effects

• Examples: global state, input/output, choice, ...

• Moggi ('89) proposed the use of monads

• We model them using algebraic theories T = (Σ , E)

 operations Σ + equations E

Computational effects

• Examples: global state, input/output, choice, ...

• Moggi ('89) proposed the use of monads

• We model them using algebraic theories T = (Σ , E)

 operations Σ + equations E

Plotkin, Power '02

Computational effects

read x y

writezero x

writeone x

writezero (writeone x) ≡ writeone x

writeone (writezero x) ≡ writezero x

writezero (read x y) ≡ writezero x
 ...

• Examples: global state, input/output, choice, ...

• Moggi ('89) proposed the use of monads

• We model them using algebraic theories T = (Σ , E)

 operations Σ + equations E

Plotkin, Power '02

How to reason about impure programs

based on these algebraic effect theories?

A fine-grain call-by-value
intermediate language

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

Γ, x : σ,Γ′ !v x : σ Γ !v " : 1
Γ !v V : σ1 × σ2

Γ !v πi(V) : σi

Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v 〈V1, V2〉 : σ1 × σ2

Γ !v V : σ
Γ !p returnV : σ

Γ !p M : σ Γ, x : σ !p N : τ

Γ !p M to x.N : τ

Γ, x : σ !p N : τ

Γ !v λx : σ.N : σ ⇀ τ
Γ !v V : σ ⇀ τ Γ !v W : σ

Γ !p VW : τ

We see from the above that the terms of FGCBV are very similar to simply typed lambda

calculus except for the separate typing judgments and two specific producer terms return

and to .

returnV is the trivial producer that takes a value term V and wraps an effect-free

computation around it. M to x.N is a sequencing operation for producers. It takes a

producer term M , computes its value and then computes N having bound the value

for variable x in N . Additionally, we can also see that lambda abstraction binds the

outermost free-variable in a producer term and turns it into a value term of function

type. Application, however, takes two value terms and gives a producer term.

Definition 4.1.8. In Agda value and producer terms are given as two mutually defined

datatypes parametrized by contexts Γ.

data _!v_ (Γ : Ctx) : Ty → Set where

var : {σ : Ty} → σ ∈ Γ → Γ !v σ

proj1 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ1

proj2 : {σ1 σ2 : Ty} → Γ !v σ1 ∧ σ2 → Γ !v σ2

pair : {σ1 σ2 : Ty} → Γ !v σ1 → Γ !v σ2 → Γ !v σ1 ∧ σ2

" : Γ !v One

lam : {σ τ : Ty} → (Γ :: σ) !p τ → Γ !v σ ⇀ τ

data _!p_ (Γ : Ctx) : Ty → Set where

return : {σ : Ty} → Γ !v σ → Γ !p σ

to : {σ τ : Ty} → Γ !p σ → (Γ :: σ) !p τ → Γ !p τ

app : {σ τ : Ty} → Γ !v σ ⇀ τ → Γ !v σ → Γ !p τ

In the definition above, var x denotes a variable in the given context given by the De-

Bruijn index x. Other term constructors have their usual meaning given earlier modulo

the naming conventions (e.g., we are using proj1 instead of π1).

11

4.1.1 Types

The type signature of FGCBV is given by the following grammar.

σ ::= α | 1 | σ × σ | σ ⇀ σ | ...

Here and in the following we let σ (and τ) to range over types. Additionally, we let α

range over a set of base types. The function space ⇀ we consider is the usual call-by-value

functions space that takes a value and produces a computation.

Note: In this thesis we work with a type signature comprising of finite products and

function spaces. We leave the treatment of finite coproducts as a future work in Section

???. However, in Section ??? we show how to accommodate boolean types in the language

from two different viewpoints.

Definition 4.1.1. In Agda we present FGCBV types as an inductively defined datatype.

data Ty : Set where

α : Ty

One : Ty

∧ : Ty → Ty → Ty

⇀ : Ty → Ty → Ty

As we can’t overload symbols in Agda so freely, we have decided to use ∧ for binary

products of types and will keep × for the binary products in semantics.

4.1.2 Contexts

Typing contexts are defined as lists of typed variables growing to the right. For example,

we write a context Γ comprising of n variables as

Γ = xn : σn, xn−1 : σn−1, ..., x1 : σ1

where we say that x1 : σ1 is the outermost variable. However, this explicit use of variable

names would force us to rigorously prove α-equivalence in the following development. To

avoid this and keep the presentation more readable we have decided to encode the variables

using De-Bruijn indices. This, in turn, means that all the terms in our formalization will

be α-equivalent by definition.

8

• Type signature

• Value terms

• Producer terms

Levy, Power, Thielecke '03

!

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

!

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

!

Γ !p M : σ

Γ !p write(one)σ(M) : σ

• Every operation in Σ defines a producer term

• Extend the usual beta-eta equations

with all the equations in E

∗ " ≡ ∗

Γ, x : σ "p M : τ Γ "v V : σ

Γ "p (λx : σ.M)V ≡ M [V/x] : τ

! ≡

Γ !v V σ ⇀ τ
Γ !v V ≡ λx : σ.(V x) : σ ⇀ τ

Γ !p M : σ

Γ !p write(zero)σ (write(one)σ M) ≡ write(one)σ M : σ

Extending algebraic theories
to the intermediate language

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

• Every operation in Σ defines a producer term

• Extend the usual beta-eta equations

with all the equations in E

∗ " ≡ ∗

Γ, x : σ "p M : τ Γ "v V : σ

Γ "p (λx : σ.M)V ≡ M [V/x] : τ

! ≡

Γ !v V σ ⇀ τ
Γ !v V ≡ λx : σ.(V x) : σ ⇀ τ

Γ !p M : σ

Γ !p write(zero)σ (write(one)σ M) ≡ write(one)σ M : σ

Extending algebraic theories
to the intermediate language

Extending algebraic theories
to the intermediate language

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

Theorem 4.2.3. The defined interpretation of FGCBV into a monad model is sound and

complete with respect to the equational theory defined in Section 4.1.6.

Proof. This result has been shown by Levy, Power and Thielecke [4]. More precisely,

they first formulate sound and complete interpretation for FGCBV using closed Freyd

categories and then show that giving a closed Freyd category is equivalent to giving a

monad model (λc-model). We prove this theorem in Section ??? as a part of the proof of

correctness of the normalization by evaluation algorithm.

4.3 Augmenting the language with an effect theory

The FGCBV language we introduced in the previous two sections will form the skeleton of

our view of algebraic effect theories as higher-order programming languages. The following

exposition of viewing algebraic effect theories as a part of FGCBV is similar to the one

proposed by Staton and Møgelberg [7]. The difference is that we consider algebraic effects

rather than general effects.

We now present FGCBVE, i.e., FGCBV augmented with an algebraic effect theory T =

(Σ, E).

For every operation op ∈ Σ, we define a new producer term given by the following typing

rule
Γ !p M1 : σ ...Γ !p Mn : σ

Γ !p opσ(M1, ... ,Mn) : σ

Γ !p M0 : σ Γ !p M1 : σ

Γ !p readσ(M0,M1) : σ

Γ !p M : σ

Γ !p write(zero)σ(M) : σ

Γ !p M : σ

Γ !p write(one)σ(M) : σ

Intuitively, the producer term opσ(M1, ... ,Mn) denotes a computation that performs the

effect defined by op and then continues as one of the producer terms M1, ...,Mn

In Agda we extend the datatype of normal producer terms with the following term con-

structor.

Definition 4.3.1 (Producer terms with algebraic operations).

data _!p_ (Γ : Ctx) : Ty → Set where

...

20

• Every operation in Σ defines a producer term

• Extend the usual beta-eta equations

with all the equations in E

id-subst : {Γ : Ctx} → Sub Γ Γ

id-subst x = var x

Definition 4.1.19 (Composition of substitutions).

comp-subst : {Γ Γ’ Γ’’ : Ctx} → Sub Γ’ Γ’’ → Sub Γ Γ’ → Sub Γ Γ’’

comp-subst f g = subst-v f · g

Definition 4.1.20 (Extending a substitution by a value term).

ext-subst : {Γ Γ’ : Ctx} {σ : Ty} → Sub Γ Γ’ → Γ’ "v σ → Sub (Γ :: σ) Γ’

ext-subst f t Hd = t

ext-subst f t (Tl x) = f x

Definition 4.1.21 (Action of renaming on substitutions).

subst-rename : {Γ Γ’ Γ’’ : Ctx} → Ren Γ’ Γ’’ → Sub Γ Γ’ → Sub Γ Γ’’

subst-rename f g x = "v-rename f (g x)

Using the notation given above we can express the one-place substitutions M [V/x] of

outermost variables in FGCBV syntax by writing subst-p (ext-subst id-subst V) M in

Agda. This just means that all variables in a given context, beside the outermost, are

substituted with themselves and the outermost is substituted with V.

4.1.6 Equational theory

Next we present the equational theory of FGCBV. The theory is given by equations in

context of the form Γ "v V ≡ W : σ for well-typed value terms and Γ "p M ≡ N : σ for

well-typed producer terms. We present the equations in natural-deduction style to make

the typing of all terms involved explicit.

(η∗)
Γ "v V : 1

Γ "v V ≡ ∗ : 1

(β ⇀)

Γ, x : σ "p M : τ Γ "v V : σ

Γ "p (λx : σ.M)V ≡ M [V/x] : τ

(η ⇀)
Γ "v V σ ⇀ τ

Γ "v V ≡ λx : σ.(V x) : σ ⇀ τ

(β×i)
Γ "v V1 : σ1 Γ "v V2 : σ2

Γ "v πi(〈V1, V2〉) ≡ Vi : σi

(η×)
Γ "v V : σ1 × σ2

Γ "v V ≡ 〈π1(V), π2(V)〉 : σ1 × σ2

15

id-subst : {Γ : Ctx} → Sub Γ Γ

id-subst x = var x

Definition 4.1.19 (Composition of substitutions).

comp-subst : {Γ Γ’ Γ’’ : Ctx} → Sub Γ’ Γ’’ → Sub Γ Γ’ → Sub Γ Γ’’

comp-subst f g = subst-v f · g

Definition 4.1.20 (Extending a substitution by a value term).

ext-subst : {Γ Γ’ : Ctx} {σ : Ty} → Sub Γ Γ’ → Γ’ !v σ → Sub (Γ :: σ) Γ’

ext-subst f t Hd = t

ext-subst f t (Tl x) = f x

Definition 4.1.21 (Action of renaming on substitutions).

subst-rename : {Γ Γ’ Γ’’ : Ctx} → Ren Γ’ Γ’’ → Sub Γ Γ’ → Sub Γ Γ’’

subst-rename f g x = !v-rename f (g x)

Using the notation given above we can express the one-place substitutions M [V/x] of

outermost variables in FGCBV syntax by writing subst-p (ext-subst id-subst V) M in

Agda. This just means that all variables in a given context, beside the outermost, are

substituted with themselves and the outermost is substituted with V.

4.1.6 Equational theory

Next we present the equational theory of FGCBV. The theory is given by equations in

context of the form Γ !v V ≡ W : σ for well-typed value terms and Γ !p M ≡ N : σ for

well-typed producer terms. We present the equations in natural-deduction style to make

the typing of all terms involved explicit.

(η∗)
Γ !v V : 1

Γ !v V ≡ ∗ : 1

(β ⇀)

Γ, x : σ !p M : τ Γ !v V : σ

Γ !p (λx : σ.M)V ≡ M [V/x] : τ

(η ⇀)
Γ !v V σ ⇀ τ

Γ !v V ≡ λx : σ.(V x) : σ ⇀ τ

(β×i)
Γ !v V1 : σ1 Γ !v V2 : σ2

Γ !v πi(〈V1, V2〉) ≡ Vi : σi

(η×)
Γ !v V : σ1 × σ2

Γ !v V ≡ 〈π1(V), π2(V)〉 : σ1 × σ2

15

(β to)

Γ !v V : σ Γ, x : σ !p N : τ

Γ !p returnV to x.N ≡ N [V/x] : τ

(η to)

Γ !p M : σ Γ, x : σ !v x : σ

Γ !p M ≡ M tox. returnx : σ

(assoc to)

Γ !p M : σ Γ, x : σ !p N : τ Γ, y : τ !p P : ρ

Γ !p (M to x.N) to y.P ≡ M to x.(N to y.P) : ρ

(η to)

Γ !p M : σ

Γ !p write(zero)σ (write(one)σ M) ≡ write(one)σ M : σ

Moreover, we require the equational theory to be an equivalence relation which is also

congruent on all the term constructors. We will make this explicit when we next define

these equational theories in Agda.

Definition 4.1.22 (Equational theory of FGCBV).

data _!v_≡_ : (Γ : Ctx) → {σ : Ty} → Γ !v σ → Γ !v σ → Set where

-- equivalence

≡-refl : {Γ : Ctx} {σ : Ty} {t : Γ !v σ} → Γ !v t ≡ t

≡-symm : {Γ : Ctx} {σ : Ty} {t u : Γ !v σ} → Γ !v t ≡ u → Γ !v u ≡ t

≡-trans : {Γ : Ctx} {σ : Ty} {t v : Γ !v σ} {u : Γ !v σ} → Γ !v t ≡ u →
Γ !v u ≡ v → Γ !v t ≡ v

-- congruence

cong, : {Γ : Ctx} {σ1 σ2 : Ty} {t t’ : Γ !v σ1} {u u’ : Γ !v σ2} → Γ !v t ≡ t’ →
Γ !v u ≡ u’ → Γ !v (pair t u) ≡ pair t’ u’

congproj1 : {Γ : Ctx} {σ1 σ2 : Ty} {t t’ : Γ !v σ1 ∧ σ2} → Γ !v t ≡ t’ →
Γ !v proj1 t ≡ proj1 t’

congproj2 : {Γ : Ctx} {σ1 σ2 : Ty} {t t’ : Γ !v σ1 ∧ σ2} → Γ !v t ≡ t’ →
Γ !v proj2 t ≡ proj2 t’

conglam : {Γ : Ctx} {σ τ : Ty} {t t’ : Γ :: σ !p τ} → (Γ :: σ) !p t ≡ t’ →
Γ !v lam t ≡ lam t’

-- beta laws

β×1 : {Γ : Ctx} {σ1 σ2 : Ty} {t : Γ !v σ1} {u : Γ !v σ2} →
Γ !v proj1 (pair t u) ≡ t

β×2 : {Γ : Ctx} {σ1 σ2 : Ty} {t : Γ !v σ1} {u : Γ !v σ2} →
Γ !v proj2 (pair t u) ≡ u

-- eta laws

η% : {Γ : Ctx} {t : Γ !v One} → Γ !v t ≡ %

η× : {Γ : Ctx} {σ1 σ2 : Ty} {t : Γ !v σ1 ∧ σ2} →
Γ !v t ≡ (pair (proj1 t) (proj2 t))

η⇀ : {Γ : Ctx} {σ τ : Ty} {t : Γ !v σ ⇀ τ} →
Γ !v lam (app ((!v-rename wk1 t)) (var Hd)) ≡ t

data _!p_≡_ : (Γ : Ctx) → {σ : Ty} → Γ !p σ → Γ !p σ → Set where

16

Is this representation of

algebraic theories correct?

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

iff

they are provably equal in the extended language

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

iff

they are provably equal in the extended language

✓

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

iff

they are provably equal in the extended language

Tricky!✓

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

Provable equality

function foo f =
let x = read() in
let z = f x in

write zero ; return z

is provably equal to

How to decide provable equality?

Normalization

• So we want do decide when terms are provably equal

• We do this by computing their normal forms

satisfying:

Theorem:
Given two provably equal terms in the language,

they have canonical normal forms

Normalization by evaluation

terms

interpret

reify

normal forms

nf = reify ◦ interpret

denotational semantics

• A semantic notion of normalization

• Berger & Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07

• We define an inverse of interpretation called reification

Normalization by evaluation

• A semantic notion of normalization

• Berger & Schwichtenberg '91, Filinski '01, Fiore et. al. '02, Abel et. al. '07

• We define an inverse of interpretation called reification

terms

denotational semantics

interpret

reify

normal forms

nf = reify ◦ interpret

Presheaf model
with

a strong
residual monad

Kripke logical relations

Why a residualizing interpretation?

• We need to preserve the order of (possible) effects!

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

1. the reading effect

2. possible
unknown effects

3. the writing effect

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

1. the reading effect

2. possible
unknown effects

3. the writing effect

Why a residualizing interpretation?

• We need to preserve the order of (possible) effects!

function foo f =
let x = read() in
let y = f (proj0 (x , one)) in
let z = return y in
write zero ; return z

1. the reading effect

2. possible
unknown effects

3. the writing effect

The main normalization results

Theorem:
Given a term t in the language,

nf t is provably equal to t in the language

nf = reify ◦ interpret

Provably equal normal forms

Theorem:
Given two provably equal terms t and u in the language,

nf t and nf u are equivalent up to the algebraic theory

(equal if E is empty)

nf = reify ◦ interpret

Canonical normal forms

This representation is correct!

Theorem:
Given two terms in the algebraic effect theory,

they are provably equal in the algebraic theory

iff

they are provably equal in the extended language

✓ ✓

Conclusions and future work

• We have justified the correctness of extending algebraic
theories to a call-by-value intermediate language

• The normalization algorithm and proofs have been
rigorously formalized in Agda

• ≈ 6000 lines of formal proofs

• Future investigations

• sum types and natural numbers

• parametrized and second-order algebraic theories

