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Computational effects in FP

e Using monads (as in HASKELL)
type St a = String — (a, String)

St a— St (a,a)

f
fc=c>>= (\x > ¢c >>= (\y — return (x,y)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : int
effect Put : int — unit
(x: int — axint!{} x)
let g (c:unit — a!{Get,Put}) =
with st_h handle (perform (Put 42); c ())

e Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?



External world in FP

e Declare a signature of monads or algebraic effects, e.g.,

(*+ System.lO x)
type 10 a
openFile :: FilePath — IOMode — IO Handle

(* pervasives.eff =x)
effect Randomint ©int — int
effect RandomFloat : float — float

e And then treat them specially in the compiler, e.g.,

(x eff/src/backends/runtime/eval.ml x)
let rec top_handle op =
match op with

|
but ...
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effect Write : (string*string) -> unit
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I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
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;0pen_creat
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] 00666 file_name in
Printf.fprintf file_handle "%s" str;
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Can | do file 10 (or just O) in Eff? 5 Ziga Luksi¢ 12:18 PMm
not currently

l Ohad 8 s:35pM
So here's the hack | addedgWe should do something a bit more principled,

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;Open_append
;0pen_creat
;O0pen_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)
)

This talk — a principled modular (co)algebraic approach!
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A bigger issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

e Even worse when we wrap f in a handler?

let h = handler
| effect (fwrite fh s k) +— return ()

let g' s =
with h handle f () (* dangling fh | x)
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So, how could we solve these issues?

e We could try using existing PL techniques, e.g.,

e Modules and abstraction, e.g., System.|O

type 10 a

hClose :: Handle — 10 ()

e Linear (and non-linear) types and effects

linear type fhandle
effect FClose : (linear fhandle) — unit

linear effect FClose : fhandle — unit
e Handlers with initially and finally clauses

e Problem: They don't really capture the essence of the problem
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Algebraic digression: What's a comodel?

A signature X is a set of operation symbols op : A, ~» Bop

A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Awp X MP® — M}opes )

A comodel/coalgebra/cohandler W of ¥ is given by
W= (W:Set, {opy : Aopp X W — Bop X Whopes )

Intutively, comodels describe evolution of worlds wy, wy, ws, . ..

e Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

o Stateful runners of effectful programs (Uustalu)

e Linear state-passing translation (Mggelberg and Staton)

o Top-level behaviour of alg. effects in EFF v2  (Bauer & Pretnar)
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Back to the essence: What is it then?

o Let's look at HASKELL's |0 monad again

e A common informal explanation is to think of functions

a—10b
as
a — (RealWorld — (b, RealWorld))

which is the same as

(a, RealWorld) — (b, RealWorld)

e With the System.|O module abstraction ensuring that
e \We cannot get our hands on RealWorld (no get and put)
e We have the impression of RealWorld used linearly

e We don’t ask more from RealWorld than it can provide



Back to the essence: What is it then?

e Let's look at HASKELL's IO monad again
e A common explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as
(a, RealWorld) — (b, RealWorld)

But wait a minute! RealWorld looks a lot like a comodell!
hGetLine : (Handle, RealWorld) — (String, RealWorld)
hClose : (Handle, RealWorld) — ((), RealWorld)

Important: co-operations (hClose) make a promise to return!
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Modular treatment of external worlds

e For example

/—\9

Pure/ 10 MLState (ext. world)
Fh 10 + CallStatistics FPState (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"
e Fc — ‘“world that is blissfully unaware of fh"
e Observation: |0 <—» Fh and other «—» look a lot like lenses
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Comodels as a gateway to the external world

e Running a program on a comodel (using external resources)

using

C (x : Comodel(Sig W) %) @ c_init (x : W x)
run

c (x : A x)

finally @ (WW) {
return(x:A) — c_fin(w,x) (x : B %) } (« : B =)

e Comodels are defined as follows

C =
{

op (x:A) @ (w:W) — c_op(x,w), (x : B =W )

}

for all operations op : A ~~ B in a given signature ¥
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Focussing on a fragment of the external world

let f (s:string) = (+« in 10
using
Fh @ (fopen_of_io "foo.txt") (+ in 10
run
fwrite_of _fh (s"s) (* in Fh
finally @ fh {
return(x) — fclose_of_io fh } (x+ in 10
where
Fh = (x W= fhandle

{ fread _ @ fh— ...
fwrite s @ fh — fwrite_of_io s fh;
return ((),fh) }

(x fread : (unit x« W) — (string * W)
(x fwrite : (string * W) — (unit x W)
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Modular treatment of worlds (I0 «+— Fh <— Fc)

let f (s:string) = (* in 10 x)
using Fh @ (fopen_of_io "foo.txt")
run
using Fc @ (fread_of_fh ()) (+ in Fh x)
run
fwrite_of_fc (s"s) (+ in Fc x)

finally @ s {
return(_) — fwrite_of_fh s }

finally @ fh {
return(_) — fclose_of_io fh }

where

Fc = { fwrite s @ s’ — return ((),s'"s) }

e More generally: comodels allow transactions and sandboxing
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Tracking the world usage (10 «+— 10+ Stats)

let f (fh:fhandle) (s:string) = (¢ in 10 x)
using
|[O+Stats @ (return 0)
run

fwrite_of_stats fh (s”s) (* in 1O+Stats x)
finally @ c {

return(_) —
let fh' = fopen_of_io "stats.txt” in

fwrite_of_io fh' c; fclose_of_io fh' }

where

|O+Stats = (* W= natx)
{ fwrite fh s @ ¢ — fwrite_of_io fh s;
return ((),c+1),

}

e More generally: allows to slot in instrumentation/monitors



The external world can also be pure (Pure <— Str)



The external world can also be pure (Pure <— Str)

let f () = (x in Pure x)
using
Str @ (return "some default initial value”)
run
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return(x) — return x }
Str = (x W= string x)

{ get - @ s — return (s,s) ,
set s @ _— return ((),s) }



The external world can also be pure (Pure <— Str)

let f () = (x in Pure x)
using
Str @ (return "some default initial value”)
run

let s = get () in

if (s = "foo")

then (...; set "bar"; ...)
else (...)

finally @ _ {
return(x) — return x }

Str = (* W= stringx)
{ get - @ s — return (s,s) ,
set s @ _— return ((),s) }

e Similar to ambient values (and ambient functions) in KokA
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using (x with val amb = ... %)
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run

let amb = get () in

if (amb = "foo")

then (...; (x with val amb = ... x)
using Amb @ ... run ... finally ...);
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More on ambient values/functions (Pure <— Amb)

let f (s:string) =
using (x with val amb = ... %)
Amb © (return "some default initial value”)
run

let amb = get () in

if (amb = "foo")

then (...; (x with val amb = ... x)
using Amb @ ... run ... finally ...);

else (...)

finally @ _ { return(x) — return x }

Amb = { get _ @ s — return (s,s) }

e Amb. functions by amb. function application as a co-operation
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So what’s happening formally?
e Core calculus for comodels (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB

Interfaces (signatures) of external worlds

Y o= {op;:Ai~B, ... ,o0p,: A~ B, }

Computation terms (value terms are unsurprising)

c == returnv | letx=cing | letrec f x=c¢ in
| Vi Vo
| opv(x.c)

|

using C @ ¢ run c finally @ w { return(x) — ¢ }

Comodels (cohandlers)

C :={oppx@wr—c, ...,0p,xQ@wrc,}
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So what’s happening formally?
e Typing judgements

rM-v:A FrEc: A

e The two central typing rules are

[ = C comodel of ¥’ with carrier Wc
FrEc:We TEc:A T,wW,x:AE¢:B

[ using C @ ¢; run ¢ finally @ w { return(x) — ¢r } : B

and

op:Awp ~ Bep €L MEv:As, M x:BopFc: A
FEopv(xc): A
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(Denotational) semantics (in w-cpos)

e Term interpretation looks very similar to alg. effects:
[TEv:A]: [ — [A] [TEc:A]: ] — T, [A]

e un-cohandled operations wait for a suitable external world!

e The interesting part is the interpretation of using ... run

[ = C comodel of ¥’ with carrier Wc
FTEq:We TEc:A T,w:We,x:AE¢:B
[ using C @ ¢; run ¢ finally @ w { return(x) — ¢r } : B

which is based on M&S's linear state-passing translation, i.e.,

[C] € Comodsy, (Kleisli( T, ))
run_onicy : Ty, [A] — ([[Wc]] — Tx, ([Wc] x [[A]]))
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Computational behaviour of using ... run

e Two semantically valid program equations

using C @ ¢; run (returnv) finally @ w { return(x) — ¢ }

let w' = ¢ in ¢ [w'/w, v/x]

using C @ ¢; run (op v (y.c)) finally @ w { return(x) — ¢ }

let w = ¢ in
let z = Cos[w'/w, v/x] in (
match z with { (y’, w") —
using C © (return w”)
run (c[y’/y])
finally @ w { return(x) — cr } }))
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What if the world doesn’t keep promises?
e Recall that the semantics of co-operations
0p : [Aop] ¥ [W] — T ([Bop] x [W])
ensures that the world always comes back with an answer
e What if 10 lost connection to the HDD where "foo.txt” was?

e Our solution: Allow the world to raise signals to talk back

o = (x : AxW—=T((B xW) +S) x
{ op x @w+— if b then (...) else (raise s) }

)

using C @ c_init

run c (* : A1L'S )
finally @ w {
return(x) — c_fin(w,x), (* B! S' x)
signal(s) — c_sig(w,s) } (* B! S' x)
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What if the world doesn’t keep promises?

e User-raised signals can be handled locally (exceptional syntax)

try x = (raise s) in c unless {signal(s) — c_sig}

e But worldly signals cannot be handled locally, e.g., consider

using C @ c_init

run (try x = (raise s) in c unless {(*x)...})
finally @ w {
return(x) — c_fin(w,x),
signal(s) — c_sig(w,s) }
VS

using C @ c_init
run (try x = (op v) in c unless {...})
finally @

fin (w,x),

w {
return(x) — c_
signal (s) — (*%)c_ 5|g( ,s) }
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What if the world doesn’t keep promises?

e When a signal s occurs in run c, control jumps to c_sig(w,s)

using C @ c_init
run c
finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c

e To resume run c, the program and/or world have to support it

let rec ctr_printer i =
using Out+Ctr @ (return i)
run
while(T) {let j = get_c in print j; incr_c}
finally @ k {
return(x) — ...,
signal(s) — print "foo"; ctr_printer k }



What if the world doesn’t keep promises?

e When a signal s occurs in run c, control jumps to c_sig(w,s)

using C @ c_init
run c
finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c

e To resume run c, the program and/or world have to support it

let rec ctr_printer i =
using Out+Ctr @ (return i)
run
while(T) {let j = get_c in print j; incr_c}
finally @ k {
return(x) — ...,
signal(s) — print "foo"; ctr_printer k }

e World-based: could store a trace so as to replay “old” co-ops
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What about alg. effects and handlers?

e In the following

using C @ c_init
run c
finally @ w { return(x) — c_fin(w,x) , ... }

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in ¢,

but they must not be allowed to escape run
e to escape, have to use the co-operations of the external world
e the continuations of handlers in ¢ are delimited by run

e so that we ensure that finally block is definitely reached

e Where do multi-handlers fit? Co-operating handlers-cohandlers?
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Conclusions

e Comodels as a gateway for interacting with the external world

System.lO , KOKA's initially & finally , PYTHON's with, ...

Promising examples: sandboxing, instrumentation, monitors, . ..

Comodels and init.-fin. lenses admit natural combinators

Prototypes: a library in HASKELL, and a small language Coop

Can also be a basis for FFI, e.g., in CooP (and future EFF)

f:A— B € OCaAaML

external f : A X Wigp-tevel = B X Wigp-tevel € top-level-comodel

For the future: interface polymorphism, linear typing, ...



