Comodels as a gateway for
interacting with the external world

Danel Ahman

(joint work with Andrej Bauer)

University of Ljubljana, Slovenia

MSR Redmond, 15 May 2019



A modular programming abstraction
for using external resources

Danel Ahman

(joint work with Andrej Bauer)

University of Ljubljana, Slovenia

MSR Redmond, 15 May 2019



Computational effects in FP



Computational effects in FP

e Using monads (as in HASKELL)
type St a = String — (a, String)

St a— St (a,a)

f
fe=c>>= (\x—=c>>= (\y = return (x,y)))



Computational effects in FP

e Using monads (as in HASKELL)

type St a = String — (a, String)

f St a— St (a,a)
fc=c>>= (\x = c >>= (\y = return (x,y)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : int
effect Put : int — unit
(x: int — axint!{} x)
let g (c:unit — a!{Get,Put}) =
with st_h handle (perform (Put 42); c ())



Computational effects in FP

e Using monads (as in HASKELL)
type St a = String — (a, String)

St a— St (a,a)

f
fc=c>>= (\x > ¢c >>= (\y — return (x,y)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : int
effect Put : int — unit
(x: int — axint!{} x)
let g (c:unit — a!{Get,Put}) =
with st_h handle (perform (Put 42); c ())

e Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?



External world in FP

e Declare a signature of monads or algebraic effects, e.g.,

(*+ System.lO x)
type 10 a
openFile :: FilePath — IOMode — IO Handle

(* pervasives.eff =x)
effect Randomint ©int — int
effect RandomFloat : float — float

e And then treat them specially in the compiler, e.g.,

(x eff/src/backends/runtime/eval.ml x)
let rec top_handle op =
match op with

|
but ...



An issue — difficult to cover all use cases



An issue — difficult to cover all use cases

Ohad 8 12:17pPM
Can | do file IO (or just O) in Eff?




An issue — difficult to cover all use cases

Ohad 8 12:17pPM
Can | do file 10 (or just O) in Eff? ﬁ Ziga Luksi¢ 12:18 PM
not currently




An issue — difficult to cover all use cases

I Ohad 8 12:17PM
Can | do file 10 (or just O) in Eff? =6 Ziga Luksi¢ 12:18 PM

not currently

l Ohad 8 s:35pM
So here's the hack | addedgWe should do something a bit more principled,

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;Open_append
;0pen_creat
;O0pen_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)




An issue — difficult to cover all use cases

I Ohad & 12:17 PMm
Can | do file 10 (or just O) in Eff? 5 Ziga Luksi¢ 12:18 PMm
not currently

l Ohad 8 s:35pM
So here's the hack | addedgWe should do something a bit more principled,

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;Open_append
;0pen_creat
;O0pen_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)
)

This talk — a principled modular (co)algebraic approach!



A bigger issue — linearity or lack thereof



A bigger issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt" in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh



A bigger issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)



A bigger issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

e Even worse when we wrap f in a handler?

let h = handler
| effect (fwrite fh s k) — return ()

let g' s =
with h handle f ()



A bigger issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

e Even worse when we wrap f in a handler?

let h = handler
| effect (fwrite fh s k) +— return ()

let g' s =
with h handle f () (* dangling fh | x)



So, how could we solve these issues?



So, how could we solve these issues?

e We could try using existing PL techniques, e.g.,

e Modules and abstraction, e.g., System.lO

type 10 a

hClose :: Handle — 10 ()

e Linear (and non-linear) types and effects

linear type fhandle
effect FClose : (linear fhandle) — unit

linear effect FClose : fhandle — unit

e Handlers with initially and finally clauses



So, how could we solve these issues?

e We could try using existing PL techniques, e.g.,

e Modules and abstraction, e.g., System.|O

type 10 a

hClose :: Handle — 10 ()

e Linear (and non-linear) types and effects

linear type fhandle
effect FClose : (linear fhandle) — unit

linear effect FClose : fhandle — unit
e Handlers with initially and finally clauses

e Problem: They don't really capture the essence of the problem



Algebraic digression: What's a comodel?



Algebraic digression: What's a comodel?

e A signature X is a set of operation symbols op : A, ~ By,



Algebraic digression: What's a comodel?

e A signature X is a set of operation symbols op : A, ~ By,

e A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Awp X MP® — M}opes )



Algebraic digression: What's a comodel?

e A signature X is a set of operation symbols op : A, ~ By,

e A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Awp X MP® — M}opes )

e A comodel/coalgebra/cohandler W of ¥ is given by
W= (W:Set, {opy : Aopp X W — Bop X Whopes )

e Intutively, comodels describe evolution of worlds wy, ws, ws, . ..



Algebraic digression: What's a comodel?

A signature X is a set of operation symbols op : A, ~» Bop

A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Awp X MP® — M}opes )

A comodel/coalgebra/cohandler W of ¥ is given by
W= (W:Set, {opy : Aopp X W — Bop X Whopes )

Intutively, comodels describe evolution of worlds wy, wy, ws, . ..

e Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

o Stateful runners of effectful programs (Uustalu)

e Linear state-passing translation (Mggelberg and Staton)

o Top-level behaviour of alg. effects in EFF v2  (Bauer & Pretnar)




Back to the essence: What is it then?



Back to the essence: What is it then?

o Let's look at HASKELL's |0 monad again



Back to the essence: What is it then?

o Let's look at HASKELL's |0 monad again
e A common informal explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as

(a, RealWorld) — (b, RealWorld)



Back to the essence: What is it then?

o Let's look at HASKELL's |0 monad again

e A common informal explanation is to think of functions

a—10b
as
a — (RealWorld — (b, RealWorld))

which is the same as

(a, RealWorld) — (b, RealWorld)

e With the System.|O module abstraction ensuring that
e \We cannot get our hands on RealWorld (no get and put)
e We have the impression of RealWorld used linearly

e We don’t ask more from RealWorld than it can provide



Back to the essence: What is it then?

e Let's look at HASKELL's IO monad again
e A common explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as
(a, RealWorld) — (b, RealWorld)

But wait a minute! RealWorld looks a lot like a comodell!
hGetLine : (Handle, RealWorld) — (String, RealWorld)
hClose : (Handle, RealWorld) — ((), RealWorld)

Important: co-operations (hClose) make a promise to return!




Towards a general programming abstraction



Towards a general programming abstraction

o let f (s:string) = (x in top level world =)
using 1O run
let fh = fopen "foo.txt” in

fwrite fh (s"s);
fclose fh (* in 10 world x)

Now external world explicit, but dangling fh etc still possible



Towards a general programming abstraction

o let f (s:string) = (x in top level world =)
using 1O run
let fh = fopen "foo.txt” in

fwrite fh (s"s);
fclose fh (* in 10 world x)
Now external world explicit, but dangling fh etc still possible

e let f (s:string) = (x in top level world x)
using 10 run
let fh = fopen "foo.txt" in
fwrite fh (s”s) (x in 10 world x)
finally (fclose fh)

Better, but have to explicitly open and thread through fh



Towards a general programming abstraction

o let f (s:string) = (x in top level world =)
using 1O run
let fh = fopen "foo.txt” in

fwrite fh (s"s);
fclose fh (* in 10 world x)
Now external world explicit, but dangling fh etc still possible

e let f (s:string) = (x in top level world x)
using 10 run
let fh = fopen "foo.txt" in
fwrite fh (s”s) (x in 10 world x)
finally (fclose fh)

Better, but have to explicitly open and thread through fh

e Our solution: Modular treatment of external worlds



Modular treatment of external worlds

e For example

/ 10 (ext. world)
Fh (inner world)

e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”

e Fh — 10 — “call fclose with stored fh”



Modular treatment of external worlds

e For example

/ 10 (ext. world)
Fh (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"

e Fc — ‘“world that is blissfully unaware of fh"



Modular treatment of external worlds

e For example

/ 10 (ext. world)
Fh 10 + CallStatistics (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"

e Fc — ‘“world that is blissfully unaware of fh"



Modular treatment of external worlds

e For example

Pure/ 10 (ext. world)
Fh 10 + CallStatistics (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"

e Fc — ‘“world that is blissfully unaware of fh"



Modular treatment of external worlds

e For example

Pure/ 10 MLState (ext. world)
Fh 10 + CallStatistics FPState (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"

e Fc — ‘“world that is blissfully unaware of fh"



Modular treatment of external worlds

e For example

/—\9

Pure/ 10 MLState (ext. world)
Fh 10 + CallStatistics FPState (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"

e Fc — ‘“world that is blissfully unaware of fh"



Modular treatment of external worlds

e For example

/—\9

Pure/ 10 MLState (ext. world)
Fh 10 + CallStatistics FPState (inner world)
Fc (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"
e Fc — ‘“world that is blissfully unaware of fh"
e Observation: |0 <—» Fh and other «—» look a lot like lenses



Comodels as a gateway to the external world



Comodels as a gateway to the external world

e Running a program on a comodel (using external resources)

using

C (x : Comodel(Sig W) %) @ c_init (x : W x)
run

c (x : A x)

finally @ (WW) {
return(x:A) — c_fin(w,x) (x : B %) } (« : B =)

e Comodels are defined as follows

C =
{

op (x:A) @ (w:W) — c_op(x,w), (x : B =W )

}

for all operations op : A ~~ B in a given signature ¥



Focussing on a fragment of the external world



Focussing on a fragment of the external world

let f (s:string) =
using
Fh @ (fopen_of_io "foo.txt")
run
fwrite_of_fh (s”s)
finally @ fh {
return(x) — fclose_of_io fh }



Focussing on a fragment of the external world

let f (s:string) = (* in
using
Fh @ (fopen_of_io "foo.txt") ( in
run
fwrite_of_fh (s”"s) (+ in

finally @ fh {
return(x) — fclose_of_io fh } (x in



Focussing on a fragment of the external world

let f (s:string) = (+« in 10
using
Fh @ (fopen_of_io "foo.txt") (+ in 10
run
fwrite_of _fh (s"s) (* in Fh
finally @ fh {
return(x) — fclose_of_io fh } (x+ in 10
where
Fh = (x W= fhandle

{ fread _ @ fh— ...
fwrite s @ fh — fwrite_of_io s fh;
return ((),fh) }

(x fread : (unit x« W) — (string * W)
(x fwrite : (string * W) — (unit x W)



Modular treatment of worlds (I0 «+— Fh <— Fc)



Modular treatment of worlds (I0 «+— Fh <— Fc)

let f (s:string) = (* in 10 x)
using Fh @ (fopen_of_io "foo.txt")
run
using Fc @ (fread_of_fh ()) (+ in Fh x)
run
fwrite_of_fc (s"s) (+ in Fc x)

finally @ s {
return(_) — fwrite_of_fh s }

finally @ fh {
return(_) — fclose_of_io fh }

where

Fc = { fwrite s @ s’ — return ((),s'"s) }



Modular treatment of worlds (I0 «+— Fh <— Fc)

let f (s:string) = (* in 10 x)
using Fh @ (fopen_of_io "foo.txt")
run
using Fc @ (fread_of_fh ()) (+ in Fh x)
run
fwrite_of_fc (s"s) (+ in Fc x)

finally @ s {
return(_) — fwrite_of_fh s }

finally @ fh {
return(_) — fclose_of_io fh }

where

Fc = { fwrite s @ s’ — return ((),s'"s) }

e More generally: comodels allow transactions and sandboxing



Tracking the world usage (10 «+— 10+ Stats)



Tracking the world usage (10 «+— 10+ Stats)

let f (fh:fhandle) (s:string) = (¢ in 10 x)
using
|[O+Stats @ (return 0)
run

fwrite_of_stats fh (s”s) (* in 1O+Stats x)
finally @ c {

return(_) —
let fh' = fopen_of_io "stats.txt” in

fwrite_of_io fh' c; fclose_of_io fh' }

where

[O+Stats = (x W= natx)
{ fwrite fh s @ ¢ — fwrite_of_io fh s;
return ((),c+1),

}



Tracking the world usage (10 «+— 10+ Stats)

let f (fh:fhandle) (s:string) = (¢ in 10 x)
using
|[O+Stats @ (return 0)
run

fwrite_of_stats fh (s”s) (* in 1O+Stats x)
finally @ c {

return(_) —
let fh' = fopen_of_io "stats.txt” in

fwrite_of_io fh' c; fclose_of_io fh' }

where

|O+Stats = (* W= natx)
{ fwrite fh s @ ¢ — fwrite_of_io fh s;
return ((),c+1),

}

e More generally: allows to slot in instrumentation/monitors



The external world can also be pure (Pure <— Str)



The external world can also be pure (Pure <— Str)

let f () = (x in Pure x)
using
Str @ (return "some default initial value”)
run

let s = get () in

if (s = "foo")

then (...; set "bar"; ...)
else (...)

finally @ _ {
return(x) — return x }
Str = (x W= string x)

{ get - @ s — return (s,s) ,
set s @ _— return ((),s) }



The external world can also be pure (Pure <— Str)

let f () = (x in Pure x)
using
Str @ (return "some default initial value”)
run

let s = get () in

if (s = "foo")

then (...; set "bar"; ...)
else (...)

finally @ _ {
return(x) — return x }

Str = (* W= stringx)
{ get - @ s — return (s,s) ,
set s @ _— return ((),s) }

e Similar to ambient values (and ambient functions) in KokA



More on ambient values/functions (Pure <— Amb)



More on ambient values/functions (Pure <— Amb)

let f (s:string) =
using (x with val amb = ... %)
Amb © (return "some default initial value”)
run

let amb = get () in

if (amb = "foo")

then (...; (x with val amb = ... x)
using Amb @ ... run ... finally ...);

)

else (...)
finally @ _ { return(x) — return x }

Amb = { get _ @ s — return (s,s) }



More on ambient values/functions (Pure <— Amb)

let f (s:string) =
using (x with val amb = ... %)
Amb © (return "some default initial value”)
run

let amb = get () in

if (amb = "foo")

then (...; (x with val amb = ... x)
using Amb @ ... run ... finally ...);

else (...)

finally @ _ { return(x) — return x }

Amb = { get _ @ s — return (s,s) }

e Amb. functions by amb. function application as a co-operation



So what’s happening formally?



So what’s happening formally?

e Core calculus for comodels (wo/ handlers = wait a few slides)



So what’s happening formally?
e Core calculus for comodels (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB



So what’s happening formally?
e Core calculus for comodels (wo/ handlers = wait a few slides)
e Types

ABW :=b|1|AxB|0|A+B|ASB
e Interfaces (signatures) of external worlds

Y o= {op;:Ai~B, ... ,o0p,: A~ B, }



So what’s happening formally?
e Core calculus for comodels (wo/ handlers = wait a few slides)
e Types
ABW :=b|1|AxB|0|A+B|ASB
e Interfaces (signatures) of external worlds
Y o= {op;:Ai~B, ... ,o0p,: A~ B, }
e Computation terms (value terms are unsurprising)

c == returnv | letx=cing | letrec f x=c¢ in
| Vi Vo
| opv(x.c)

|

using C @ ¢ run c finally @ w { return(x) — ¢ }



So what’s happening formally?
e Core calculus for comodels (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB

Interfaces (signatures) of external worlds

Y o= {op;:Ai~B, ... ,o0p,: A~ B, }

Computation terms (value terms are unsurprising)

c == returnv | letx=cing | letrec f x=c¢ in
| Vi Vo
| opv(x.c)

|

using C @ ¢ run c finally @ w { return(x) — ¢ }

Comodels (cohandlers)

C :={oppx@wr—c, ...,0p,xQ@wrc,}



So what’s happening formally?



So what’s happening formally?
e Typing judgements

rM-v:A FrEc: A



So what’s happening formally?
e Typing judgements

rM-v:A FrEc: A

e The two central typing rules are

[ = C comodel of ¥’ with carrier Wc
FrEc:We TEc:A T,wW,x:AE¢:B

[ using C @ ¢; run ¢ finally @ w { return(x) — ¢r } : B

and

op:Awp ~ Bep €L MEv:As, M x:BopFc: A
FEopv(xc): A




(Denotational) semantics (in w-cpos)



(Denotational) semantics (in w-cpos)

e Term interpretation looks very similar to alg. effects:
[TEv:A]: [ — [A] [TEc:A]: ] — T, [A]

e un-cohandled operations wait for a suitable external world!



(Denotational) semantics (in w-cpos)

e Term interpretation looks very similar to alg. effects:
[TEv:A]: [ — [A] [TEc:A]: ] — T, [A]

e un-cohandled operations wait for a suitable external world!

e The interesting part is the interpretation of using ... run

[ = C comodel of ¥’ with carrier Wc
FTEq:We TEc:A T,w:We,x:AE¢:B
[ using C @ ¢; run ¢ finally @ w { return(x) — ¢r } : B

which is based on M&S's linear state-passing translation, i.e.,

[C] € Comodsy, (Kleisli( T, ))
run_onicy : Ty, [A] — ([[Wc]] — Tx, ([Wc] x [[A]]))




Computational behaviour of using ... run



Computational behaviour of using ... run

e Two semantically valid program equations

using C @ ¢; run (returnv) finally @ w { return(x) — ¢ }

let w' = ¢ in ¢ [w'/w, v/x]

using C @ ¢; run (op v (y.c)) finally @ w { return(x) — ¢ }

let w = ¢ in
let z = Cos[w'/w, v/x] in (
match z with { (y’, w") —
using C © (return w”)
run (c[y’/y])
finally @ w { return(x) — cr } }))




What if the world doesn’t keep promises?



What if the world doesn’t keep promises?

e Recall that the semantics of co-operations
0P : [Asp] X [W] — Tx, ([Bop] x [W])

ensures that the world always comes back with an answer



What if the world doesn’t keep promises?
e Recall that the semantics of co-operations
op : [Aop] X [W] — T5.([Bop] x [WI])
ensures that the world always comes back with an answer

e What if 10 lost connection to the HDD where "foo.txt" was?



What if the world doesn’t keep promises?

e Recall that the semantics of co-operations
op : [Aop] X [W] — T5.([Bop] x [WI])
ensures that the world always comes back with an answer
e What if 10 lost connection to the HDD where "foo.txt” was?

e Our solution: Allow the world to raise signals to talk back

o = (x : AxW—=T((B xW) +S) x
{ op x @w+— if b then (...) else (raise s) }

)



What if the world doesn’t keep promises?
e Recall that the semantics of co-operations
0p : [Aop] ¥ [W] — T ([Bop] x [W])
ensures that the world always comes back with an answer
e What if 10 lost connection to the HDD where "foo.txt” was?

e Our solution: Allow the world to raise signals to talk back

o = (x : AxW—=T((B xW) +S) x
{ op x @w+— if b then (...) else (raise s) }

)

using C @ c_init

run c (* : A1L'S )
finally @ w {
return(x) — c_fin(w,x), (* B! S' x)
signal(s) — c_sig(w,s) } (* B! S' x)



What if the world doesn’t keep promises?

e User-raised signals can be handled locally (exceptional syntax)

try x = (raise s) in c unless {signal(s) — c_sig}



What if the world doesn’t keep promises?

e User-raised signals can be handled locally (exceptional syntax)

try x = (raise s) in c unless {signal(s) — c_sig}

e But worldly signals cannot be handled locally, e.g., consider

using C @ c_init

run (try x = (raise s) in c unless {(*x)...})
finally @ w {
return(x) — c_fin(w,x),
signal(s) — c_sig(w,s) }
VS

using C @ c_init
run (try x = (op v) in c unless {...})
finally @

fin (w,x),

w {
return(x) — c_
signal (s) — (*%)c_ 5|g( ,s) }



What if the world doesn’t keep promises?



What if the world doesn’t keep promises?
e When a signal s occurs in run c, control jumps to c_sig(w,s)
using C @ c_init
run c

finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c



What if the world doesn’t keep promises?
e When a signal s occurs in run c, control jumps to c_sig(w,s)
using C @ c_init
run c

finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c

e To resume run c, the program and/or world have to support it



What if the world doesn’t keep promises?

e When a signal s occurs in run c, control jumps to c_sig(w,s)

using C @ c_init
run c
finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c

e To resume run c, the program and/or world have to support it

let rec ctr_printer i =
using Out+Ctr @ (return i)
run
while(T) {let j = get_c in print j; incr_c}
finally @ k {
return(x) — ...,
signal(s) — print "foo"; ctr_printer k }



What if the world doesn’t keep promises?

e When a signal s occurs in run c, control jumps to c_sig(w,s)

using C @ c_init
run c
finally @ w {
return(x) — c_fin(w,x),signal(s) — c_sig(w,s)}

from which there is no automatic resume back to run c

e To resume run c, the program and/or world have to support it

let rec ctr_printer i =
using Out+Ctr @ (return i)
run
while(T) {let j = get_c in print j; incr_c}
finally @ k {
return(x) — ...,
signal(s) — print "foo"; ctr_printer k }

e World-based: could store a trace so as to replay “old” co-ops



What about alg. effects and handlers?



What about alg. effects and handlers?

e In the following

using C @ c_init
run c

finally @ w { return(x) — c_fin(w,x) , ... }

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in ¢,

but they must not be allowed to escape run

to escape, have to use the co-operations of the external world



What about alg. effects and handlers?

e In the following

using C @ c_init
run c
finally @ w { return(x) — c_fin(w,x) , ... }

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in ¢,

but they must not be allowed to escape run
e to escape, have to use the co-operations of the external world
e the continuations of handlers in ¢ are delimited by run

e so that we ensure that finally block is definitely reached



What about alg. effects and handlers?

e In the following

using C @ c_init
run c
finally @ w { return(x) — c_fin(w,x) , ... }

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in ¢,

but they must not be allowed to escape run
e to escape, have to use the co-operations of the external world
e the continuations of handlers in ¢ are delimited by run

e so that we ensure that finally block is definitely reached

e Where do multi-handlers fit? Co-operating handlers-cohandlers?



Conclusions



Conclusions

e Comodels as a gateway for interacting with the external world
e System.IO, KOKA's initially & finally , PYTHON's with, ...
e Promising examples: sandboxing, instrumentation, monitors, ...

e Comodels and init.-fin. lenses admit natural combinators



Conclusions
e Comodels as a gateway for interacting with the external world

System.lO , KOKA's initially & finally , PYTHON's with, ...

Promising examples: sandboxing, instrumentation, monitors, . ..

Comodels and init.-fin. lenses admit natural combinators

Prototypes: a library in HASKELL, and a small language Coop

Can also be a basis for FFI, e.g., in CooP (and future EFF)

f:A— B € OCaAaML

external f : A X Wigp-tevel = B X Wigp-tevel € top-level-comodel




Conclusions

e Comodels as a gateway for interacting with the external world

System.lO , KOKA's initially & finally , PYTHON's with, ...

Promising examples: sandboxing, instrumentation, monitors, . ..

Comodels and init.-fin. lenses admit natural combinators

Prototypes: a library in HASKELL, and a small language Coop

Can also be a basis for FFI, e.g., in CooP (and future EFF)

f:A— B € OCaAaML

external f : A X Wigp-tevel = B X Wigp-tevel € top-level-comodel

For the future: interface polymorphism, linear typing, ...



