Recall for free:

preorder-respecting state monads in

Danel Ahman
LFCS, University of Edinburgh

(joint work with Aseem Rastogi and Nikhil Swamy at MSR)

PLInG Meeting
13 October 2016
t

- An effectful dependently-typed functional language

$$
\begin{aligned}
a, b::=\ldots & \mid x: a \rightarrow \text { PURE } b w_{p} \\
& \mid x: a \rightarrow \text { DIV } b w_{\mathrm{d}} \\
& \mid x: a \rightarrow \text { STATE } b \text { wp }_{\mathrm{s}} \\
& \mid x: a \rightarrow \text { ST b pre post }
\end{aligned}
$$

- An effectful dependently-typed functional language

$$
\begin{aligned}
\mathrm{a}, \mathrm{~b}::=\ldots \mid & \mathrm{x}: \mathrm{a} \rightarrow \text { PURE } \mathrm{b} \mathrm{wp}_{\mathrm{p}} \\
\mid & \mathrm{x}: \mathrm{a} \rightarrow \text { DIV } \mathrm{b} \mathrm{wp}_{\mathrm{d}} \\
\mid x: a & \rightarrow \text { STATE } \mathrm{b} ~_{\mathrm{wp}}^{\mathrm{s}}
\end{aligned}
$$

PURE , DIV , STATE - Dijkstra monads

- An effectful dependently-typed functional language

a, b weakest precondition predicate transformers

| x:a \rightarrow DIV b wp p_{d}
| x:a \rightarrow STATE b wps
$\mid x: a \rightarrow$ ST \mid b pre post
PURE , DIV , STATE - Dijkstra monads

- An effectful dependently-typed functional language

a, b weakest precondition predicate transformers

$$
\begin{aligned}
& \mid \mathrm{x}: \mathrm{a} \rightarrow \text { DIV } \mathrm{b} \mathrm{wp}_{\mathrm{d}} \leftarrow \\
& \mid \mathrm{x}: \mathrm{a} \rightarrow \text { STATE } \mathrm{b} \mathrm{wp}_{\mathrm{s}} \leftarrow \\
& \mid \mathrm{x}: \mathrm{a} \rightarrow \text { ST } \mid \mathrm{b} \text { pre post }
\end{aligned}
$$

PURE , DIV , STATE - Dijkstra monads

- Some resources:
- www.fstar-lang.org
- "Dependent Types and Multi-Monadic Effects in F*"
- "Dijkstra Monads for Free"

Outline

- A recurring phenomenon
- Preorder-respecting (Dijkstra) state monads in F^{*}
- Some examples
- A glimpse of the formal metatheory
- What are Dijkstra monads fibrationally?

A recurring phenomenon

Example I

Example I

let $s=$ get () in
let $=$ put ($s+1)$ in
let $s^{\prime}=$ get () in
$f() ;$
let $s^{\prime \prime}=$ get () in
g ()

Example I

Example I

Example I

Example I

- How to prove the 2nd assert "for free"?
- How to avoid global spec. in the type of f about s ' $\leq s^{\prime}$ ' ?
- Generalise to other preorders and stable predicates?

Example 2

Example 2

val f : ref int \rightarrow STATE unit (fun $p s \rightarrow$ True)

Let $f r=$
let $r^{\prime}=$ alloc 0 in
$g r r^{\prime}$

Example 2

val $f: r e f$ int \rightarrow STATE unit (fun p s \rightarrow True)

Let $f r=$
let $r^{\prime}=$ alloc 0 in
$g r r^{\prime}$

Example 2

val $f: r e f$ int \rightarrow STATE unit (fun $p s \rightarrow$ True)

Example 2

val f : ref int \rightarrow STATE unit (fun p s \rightarrow True)
let fre

FStar.ST.recall r ;

- FStar.ST. recall is used pervasively in practice
- Can't implement it - has to be taken as an axiom
- It is intuitively correct - there is no dealloc in F^{*}
- How to make this intuition formal?

Example 3

Example 3

Monotonic references in FStar.Monotonic. RRef type m_ref (a:Type) (rel:preorder a)

Example 3

Monotonic references in FStar.Monotonic.RRef type m_ref (a:Type) (rel:preorder a)

Provides operations

- recall - works as in FStar.ST.recall
- witness - witness a predicate holding value of a ref.
- testify - a previously witnessed predicate holds for a ref.

Example 3

Monotonic references in FStar.Monotonic.RRef type m_ref (a:Type) (rel:preorder a)

Provides operations

- recall - works as in FStar.ST.recall
- witness - witness a predicate holding value of a ref.
- testify - a previously witnessed predicate holds for a ref.

also has to be taken as an axiom

Example 3

Monotonic references in FStar.Monotonic.RRef type m_ref (a:Type) (rel:preorder a)

Provides operations

- recall - works as in FStar.ST.recall
- witness - witness a predicate holding value of a ref.
- testify - a previously witnessed predicate holds for a ref.

Used pervasively in mitls-fstar
also has to be
taken as an axiom

- for monotone sequences, -counters and -logs

State monads in

State monads in

State monads in

The state monad in F^{*} has (roughly) the following type STATE : a:Type
\rightarrow wp:((a \rightarrow state \rightarrow Type $\left._{0}\right) \rightarrow$ state \rightarrow Type $\left.{ }_{0}\right)$
\rightarrow Effect

State monads in

The state monad in F^{*} has (roughly) the following type STATE : a:Type

$$
\begin{aligned}
& \left.\left.\rightarrow \text { wp:((a } \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \rightarrow \text { state } \rightarrow \text { Type }{ }_{0}\right) \\
& \rightarrow \text { Effect }
\end{aligned}
$$

WPs of state operations are familiar from Hoare Logic, e.g.
val put : x:state
\rightarrow STATE unit (fun $p \mathrm{~s} \rightarrow \mathrm{p}() \mathrm{x})$

State monads in

The state monad in F^{*} has (roughly) the following type STATE : a:Type

$$
\begin{aligned}
& \left.\left.\rightarrow \text { wp:((a } \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \rightarrow \text { state } \rightarrow \text { Type }{ }_{0}\right) \\
& \rightarrow \text { Effect }
\end{aligned}
$$

Usually a more human-readable syntactic sugar is used ST : a:Type
\rightarrow pre:(state \rightarrow Type ${ }_{0}$
\rightarrow post:(state $\left.\rightarrow(a \rightarrow \text { state } \rightarrow \text { Type })_{0}\right)$
\rightarrow Effect

Preorder-respecting state monads in

High-level picture

High-level picture

Idea is based on axioms of FStar. ST. recall and mref

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states
- ensure that writes respect them (think update monads)

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states
- ensure that writes respect them (think update monads)
- add an operation for witnessing stable predicates

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states
- ensure that writes respect them (think update monads)
- add an operation for witnessing stable predicates
- add an operation for recalling stable predicates

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states
- ensure that writes respect them (think update monads)
- add an operation for witnessing stable predicates
- add an operation for recalling stable predicates
- introduce a $■$-modality on stable predicates

High-level picture

Idea is based on axioms of FStar. ST. recall and mref and aims to be a replacement for them in long-term

At high-level, we:

- index F^{*} state monads by preorders on states
- ensure that writes respect them (think update monads)
- add an operation for witnessing stable predicates
- add an operation for recalling stable predicates
- introduce a $■$-modality on stable predicates

Relations and predicates

Relations and predicates

Relations and preorders
let relation $\mathrm{a}=\mathrm{a} \rightarrow \mathrm{a} \rightarrow$ Type $_{0}$
let preorder a = rel:relation a
\{ (forall x . rel $x \times$) \wedge
(forall x y z . rel x y \wedge rel $y ~ z \Rightarrow r e l ~ x ~ z) ~\} ~$

Relations and predicates

Relations and preorders

let relation $a=a \rightarrow a \rightarrow$ Type $_{0}$
let preorder a = rel:relation a
\{ (forall x . rel x x) ^
(forall x y z . rel x y \wedge rel y z \Rightarrow rel x z) \}
Predicates and stability
let predicate $a \quad=a \rightarrow$ Type $_{0}$
let stable_predicate \#a rel = p:predicate a \{ forall x y . p x \wedge rel x y $\Rightarrow p$ y \}

PSTATE and PST

PSTATE and PST

The signature of preorder-respecting state monads
PSTATE : rel:preorder state
\rightarrow a:Type
\rightarrow wp:((a \rightarrow state \rightarrow Type $\left._{0}\right) \rightarrow$ state \rightarrow Type $\left._{0}\right)$
\rightarrow Effect

PSTATE and PST

The signature of preorder-respecting state monads

$$
\begin{aligned}
\text { PSTATE } & : \text { rel:preorder state } \\
& \rightarrow \text { a:Type } \\
& \left.\left.\rightarrow \text { wp:((a } \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \\
& \rightarrow \text { Effect }
\end{aligned}
$$

We added PSTATE into the effect hierarchy of F^{*} via STATE

PSTATE and PST

The signature of preorder-respecting state monads

$$
\begin{aligned}
\text { PSTATE } & : \text { rel:preorder state } \\
& \rightarrow \text { a:Type } \\
& \left.\left.\rightarrow \text { wp:((a } \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \rightarrow \text { state } \rightarrow \text { Type }_{0}\right) \\
& \rightarrow \text { Effect }
\end{aligned}
$$

We added PSTATE into the effect hierarchy of F^{*} via STATE

Note: Unfortunately, at the moment we can't define sub_effect (forall state rel . Pure $\rightsquigarrow>$ PSTATE rel)

But we can make sub-effecting work for instances of PSTATE!

PSTATE and PST

The signature of preorder-respecting state monads
PSTATE : rel:preorder state
\rightarrow a:Type
\rightarrow wp:((a \rightarrow state \rightarrow Type $\left._{0}\right) \rightarrow$ state \rightarrow Type $\left._{0}\right)$
\rightarrow Effect
Analogously to STATE, we again use syntactic sugar
PST : rel:preorder state
\rightarrow a:Type
\rightarrow pre:(state \rightarrow Typee)
\rightarrow post:(state \rightarrow a \rightarrow state \rightarrow Typee $)$
\rightarrow Effect

Operations

get and put

get and put

val get : \#rel:preorder state
\rightarrow PST rel state (fun \rightarrow True)
(fun $S_{0} s S_{1} \rightarrow S_{0}=s \wedge s=s_{1}$)

get and put

pre and post are exactly as for STATE and ST

val get : \#rel:preorder state
\rightarrow PST rel state (fun \rightarrow True)
(fun $S_{0} S S_{1} \rightarrow S_{0}=S \wedge S=S_{1}$)

get and put

pre and post are exactly as for STATE and ST

val get : \#rel:preorder state
\rightarrow PST rel state (fun \rightarrow True)
(fun $S_{0} S S_{1} \rightarrow S_{0}=S \wedge s=S_{1}$)
val put : \#rel:preorder state
\rightarrow x:state
\rightarrow PST rel unit (fun $S_{0} \rightarrow$ rel $S_{0} x$) (fun _ $\mathrm{s}_{1} \rightarrow \mathrm{~s}_{1}=\mathrm{x}$)

get and put

pre and post are exactly as for STATE and ST

val get : \#rel:preorder state
\rightarrow PST rel state (fun \rightarrow True)
(fun $S_{0} S S_{1} \rightarrow S_{0}=s \wedge s=S_{1}$)
val put : \#rel:preorder state
\rightarrow x:state
\rightarrow PST rel unit (fun $S_{0} \rightarrow$ rel $S_{0} x$)

$$
\left(\text { fun } f_{1} s_{1} \rightarrow s_{1}=x\right)
$$

--modality in

--modality in

We introduce an uninterpreted function symbol
val ■ : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow Type $_{0}$

--modality in

We introduce an uninterpreted function symbol
val ■ : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow Type $_{0}$
We assume logical axioms, e.g., functoriality:
forall $p p^{\prime} .\left(f o r a l l s . p s \Rightarrow p^{\prime} s\right) \Rightarrow\left(■ p \Rightarrow \square p^{\prime}\right)$

--modality in

We introduce an uninterpreted function symbol
val ■ : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow Type $_{0}$
We assume logical axioms, e.g., functoriality:
forall p p'. (forall s.p s $\left.\Rightarrow p^{\prime} s\right) \Rightarrow\left(■ p \Rightarrow \mathrm{~m}^{\prime}\right)$
Two readings of $\square p$:
p held at some past state of an PSTATE computation
p holds at all states reachable from the current with PSTATE
witness and recall

witness and recall

val witness : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow PST rel unit (fun $S_{0} \rightarrow p S_{0}$)
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge \square p$)

witness and recall

val witness : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow PST rel unit (fun $S_{0} \rightarrow p S_{0}$)
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge \square p$)
val recall : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow PST rel unit (fun $\rightarrow_{-} \mathrm{m}_{\text {) }}$
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge p s_{1}$)

Examples

Examples

Examples

- Recalling that allocated references remain allocated
- using FStar.Heap. heap (need a source of freshness for alloc)
* using our own heap type (source of freshness built into the heap)

Examples

- Recalling that allocated references remain allocated
- using FStar.Heap. heap (need a source of freshness for alloc)
* using our own heap type (source of freshness built into the heap)
- Immutable references and other preorders

Examples

- Recalling that allocated references remain allocated
- using FStar. Heap. heap (need a source of freshness for alloc)
* using our own heap type (source of freshness built into the heap)
- Immutable references and other preorders
- Monotonic references

Examples

- Recalling that allocated references remain allocated
- using FStar.Heap.heap (need a source of freshness for alloc)
* using our own heap type (source of freshness built into the heap)
- Immutable references and other preorders
- Monotonic references
* Temporarily ignoring the constraint on put via snapshots

Our heap and ref types

Our heap and ref types

The heap and ref types
let heap $=h:\left(\right.$ nat $*\left(\right.$ nat \rightarrow option (a:Type $\left.\left.{ }_{0} \& a\right)\right)$) \{ ... \}
let ref $a=n a t$

Our heap and ref types

The heap and ref types freshness counter
let heap $=h:\left(\right.$ nat $^{*}\left(\right.$ nat $\rightarrow \operatorname{option}\left(a:\right.$ Type $\left.\left.\left._{0} \& a\right)\right)\right)$ \{ ... \}
let ref $a=n a t$

Our heap and ref types

The heap and ref types freshness counter
let heap $=h:\left(\right.$ nat $*\left(\right.$ nat \rightarrow option $\left(a:\right.$ Type $\left.\left.\left._{0} \& a\right)\right)\right)$ \{ ... \}
let ref $a=n a t$

We can define sel and upd and gen_fresh operations

Our heap and ref types

$\left.\left.\left.\begin{array}{l}\text { The heap and ref types freshness counter } \\ \text { let heap }=h:\left(\text { nat } *\left(\text { nat } \rightarrow \text { option }\left(a: T_{y p e}^{0} \&\right.\right.\right.\end{array}\right) a\right)\right)$

We can define sel and upd and gen_fresh operations

Our heap and ref types

We can define sel and upd and gen_fresh operations
and prove expected properties, e.g.:

$$
r<>r^{\prime} \Rightarrow \text { sel (upd } h r x \text {) } r^{\prime}=\text { sel } h r^{\prime}
$$

Our heap and ref types

The heap and ref types
let heap $=\mathrm{h}:\left(\right.$ nat $*\left(\right.$ nat \rightarrow option $\left(\mathrm{a}:\right.$ Type $\left.\left.\left._{\theta} \& a\right)\right)\right)$

$$
\{\ldots\}
$$

let ref $a=n a t$
both ops. have ($r \in h$) refinements on references

Goal: use this heap as drop-in replacement for $F^{* ' s}$ heap
(but in F^{*} 's heap, sel and upd don't have ($r \in h$) refinements)

- change the type of refs. to (let ref $a=n a t * a)$
- make use of the presence LEM in WPs for checking ($r \in h$)

Allocated references example

Allocated references example

The type of refs. and the preorder for AllocST
let ref $a=r:($ Heap.ref $a)\left\{\begin{array}{l}\text { (fun } h \rightarrow r \in h)\}\end{array}\right.$
let rel $h_{0} h_{1}=$ forall $a r . r \in h_{0} \Rightarrow r \in h_{1}$
AllocST a pre post $=$ PST rel a pre post

Allocated references example

The type of refs. and the preorder for AllocST
let ref $a=r:($ Heap.ref $a)\left\{\begin{array}{l}\text { (fun } h \rightarrow r \in h)\}\end{array}\right.$
let rel $h_{0} h_{1}=$ forall a $r . r \in h_{0} \Rightarrow r \in h_{1}$
AllocST a pre post $=$ PST rel a pre post

AllocST operations crucially use witness and recall, e.g.,
let read \#a (r:ref a) =

$$
\begin{aligned}
& \text { let } h=\text { get () in } \\
& \text { recall (fun } h \rightarrow r \in h) \text {; } \\
& \text { sel } h r
\end{aligned}
$$

Snapshots

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state

The snaphsot-capable preorder is indexed by rel on state
let s_{-}rel (rel:preorder state) $s_{0} s_{1}=$ match (snd s_{0}) (snd s_{1}) with

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state

The snaphsot-capable preorder is indexed by rel on state
let s_{-}rel (rel:preorder state) $s_{0} s_{1}=$ match (snd s_{0}) (snd s_{1}) with
| None \quad None $\quad \Rightarrow$ rel (fst $\left.s_{0}\right)\left(f s t s_{1}\right)$

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state
The snaphsot-capable preorder is indexed by rel on state
let s_{-}rel (rel:preorder state) $\mathrm{s}_{0} \mathrm{~s}_{1}=$ match (snd s_{0}) (snd s_{1}) with
$\begin{array}{llll}\text { | None } & \text { None } & \Rightarrow \operatorname{rel}\left(f s t s_{0}\right) \quad\left(f s t ~ s_{1}\right) \\ \text { | None } & (\text { Some s) } & \Rightarrow \operatorname{rel}\left(f s t s_{0}\right) & s\end{array}$

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state
The snaphsot-capable preorder is indexed by rel on state let s_{-}rel (rel:preorder state) $\mathrm{s}_{0} \mathrm{~s}_{1}=$ match (snd s_{0}) ($s n d s_{1}$) with

| \| None | None | \Rightarrow rel (fst $\left.s_{0}\right) \quad$ (fst $\left.s_{1}\right)$ |
| :--- | :--- | :--- | :--- |
| \| None | (Some s) | \Rightarrow rel (fst $\left.s_{\theta}\right) ~ s$ |
| \| (Some s) | None | \Rightarrow rel s (fst $\left.s_{1}\right)$ |

Snapshots

We first define snaphsot-capable state as
let s_state state $=$ state $*$ option state
The snaphsot-capable preorder is indexed by rel on state
let s_{-}rel (rel:preorder state) $\mathrm{s}_{0} \mathrm{~s}_{1}=$ match (snd s_{0}) ($s n d s_{1}$) with

None	None	$\Rightarrow \mathrm{rel}$ (fst s_{0}) (fst s_{1})
None	(Some s)	$\Rightarrow \mathrm{rel}$ (fst s_{0}) s
(Some s)	None	\Rightarrow rel s (fst s_{1})
(Some so ${ }^{\prime}$	(Some s1')	\Rightarrow rel $\mathrm{So}^{\circ} \mathrm{s}$

read and write

read and write

val read : \#rel:preorder state
\rightarrow SST rel state
(fun $S_{0} \rightarrow$ True)
(fun $s_{0} s s_{1} \rightarrow f s t s_{0}=s \wedge s=f s t s_{1} \wedge$ snd $\mathrm{s}_{0}=\mathrm{snd} \mathrm{s}_{1}$)

let read \#rel x = ...

read and write

val read : \#rel:preorder state
\rightarrow SST rel state
(fun $S_{0} \rightarrow$ True)
(fun $s_{0} s s_{1} \rightarrow f s t s_{0}=s \wedge s=f s t s_{1} \wedge$ snd $S_{0}=s n d s_{1}$)

let read \#rel x = ...

val write : \#rel:preorder state
\rightarrow x:state
\rightarrow SST rel unit
(fun $S_{0} \rightarrow s_{-} r e l$ rel $S_{0}\left(x\right.$, snd $\left.S_{0}\right)$)
(fun s_{0} _ $\mathrm{s}_{1} \rightarrow \mathrm{~s}_{1}=\left(\mathrm{x}\right.$, snd $\left.\mathrm{s}_{0}\right)$)
let write \#rel x =
witness and recall

witness and recall

val witness : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow SST rel unit (fun $\mathrm{s}_{0} \rightarrow \mathrm{p}\left(f \mathrm{fs}_{\mathrm{t}} \mathrm{S}_{0}\right) ~ \wedge$ snd $\mathrm{s}_{0}=$ None)
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge ■ p$)
let witness \#rel p = ...

witness and recall

val witness : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow SST rel unit (fun $\mathrm{S}_{0} \rightarrow \mathrm{p}\left(f \mathrm{f}_{\mathrm{t}} \mathrm{S}_{0}\right)$ ^ sud $S_{0}=$ None)
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge ■ p$)
let witness \#rel $\mathrm{p}=\ldots$
val recall : \#rel:preorder state
\rightarrow p:stable_predicate rel
\rightarrow SST rel unit (fun $S_{0} \rightarrow \boldsymbol{\square} \boldsymbol{p}$ s nd $\mathrm{s}_{0}=$ None)
(fun $s_{0} \quad s_{1} \rightarrow s_{0}=s_{1} \wedge$
$p\left(f s t s_{1}\right)$)
let recall \#rel p =

snap and ok

snap and ok

val snap : \#rel:preorder state
\rightarrow SST rel unit

$$
\begin{aligned}
& \left(\text { fun } s_{0} \rightarrow \text { snd } s_{0}=\text { None }\right) \\
& \left(\text { fun } s_{0}-s_{1} \rightarrow \text { fst } s_{0}=\text { fst } s_{1} \wedge\right. \\
& \text { snd } \left.s_{1}=\text { Some }\left(f s t s_{0}\right)\right)
\end{aligned}
$$

let snap \#rel = ...

snap and ok

val snap : \#rel:preorder state

\rightarrow SST rel unit

$$
\begin{aligned}
& \left(\text { fun } s_{0} \rightarrow \text { snd } s_{0}=\right.\text { None) } \\
& \left(\text { fun } s_{0}-s_{1} \rightarrow \text { fst } s_{0}=\text { fst } s_{1} \wedge\right. \\
& \text { snd } \left.s_{1}=\text { Some }\left(f s t s_{0}\right)\right)
\end{aligned}
$$

let snap \#rel = ...

val ok : \#rel:preorder state
\rightarrow SST rel unit
(fun $s_{0} \rightarrow$ exists s. snd $S_{0}=$ Some $s \wedge$ rel s (fst so))
(fun $s_{0} \quad s_{1} \rightarrow f s t s_{0}=f s t s_{1} \wedge$
snd $s_{1}=$ None)
let ok \#rel =

Example use of SST

Example use of SST

- Implementing a 2D point using two memory locations
- E.g., want to enforce that o can only move along some line

A glimpse of the formal metatheory

PSTATE formally

PSTATE formally

We work with a small calculus based on EMF* from DM4F
t, wp, ::= state | rel | x:t1 \rightarrow Tot t2 | x:t1 \rightarrow PSTATE t2 wp | ...
e, $\varphi \quad|x|$ fun x:t \rightarrow e | el e2 | (e1,e2) | fst e | ...
| return e | bind e1 x:t.e2
| get e | put e | witness e | recall e

PSTATE formally

We work with a small calculus based on EMF* from DM4F
t, wp, ::= state | rel | x:t1 \rightarrow Tot t2 | x:t1 \rightarrow PSTATE t2 wp | ...

$$
\begin{array}{ll}
\text { e, } \varphi \quad|x| \text { fun x:t } \rightarrow \text { e } \mid \text { e1 e2 }|(e 1, e 2)| \text { fst e | } . . \\
& \mid \text { return e | bind e1 x:t.e2 } \\
& \mid \text { get e | put e | witness e | recall e }
\end{array}
$$

Typing judgements have the form
G \vdash e : Tot t
$G \vdash e: ~ P S T A T E ~ t ~ w p ~$

PSTATE formally

We work with a small calculus based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 }->\mathrm{ Tot t2 | x:t1 }->\mathrm{ PSTATE t2 wp | ...
e, \varphi | x | fun x:t -> e | el e2 | (e1,e2) | fst e | ...
    | return e | bind e1 x:t.e2
    | get e | put e | witness e | recall e
```

Typing judgements have the form
G ト e : Tot t
G \vdash e : PSTATE t wp
There is also a judgement for logical reasoning in WPs $\mathrm{G} \mid \Phi \vDash \varphi$

PSTATE formally

We work with a small calculus based on EMF* from DM4F

```
t, wp, ::= state | rel | x:t1 }->\mathrm{ Tot t2 | x:t1 }->\mathrm{ PSTATE t2 wp | ...
e, \varphi | x | fun x:t -> e | el e2 | (e1,e2) | fst e | ...
    | return e | bind e1 x:t.e2
    | get e | put e | witness e | recall e
```

Typing judgements have the form
G ト e : Tot t
$G \vdash e: ~ P S T A T E ~ t ~ w p ~$
There is also a judgement for logical reasoning in WPs
$\mathrm{G} \mid \Phi \vDash \varphi$
nat. deduction for classical predicate logic

Operational semantics

Operational semantics

Small-step call-by-value reduction relation

$$
(\Phi, s, e) \longrightarrow\left(\Phi^{\prime}, s^{\prime}, e^{\prime}\right)
$$

where

- Φ is a finite set of (witnessed) stable predicates
- s is a value of type state
- e is an expression

Operational semantics

Small-step call-by-value reduction relation

$$
(\Phi, \mathrm{s}, \mathrm{e}) \longrightarrow\left(\Phi^{\prime}, \mathrm{s}^{\prime}, \mathrm{e}^{\prime}\right)
$$

where

- Φ is a finite set of (witnessed) stable predicates
- s is a value of type state
- e is an expression

Examples of reduction rules

$$
\begin{align*}
& (\Phi, s, \text { put } v) \longrightarrow(\Phi, v, \text { return }()) \\
& (\Phi, s, \text { witness } v) \longrightarrow(\Phi \cup\{v\}, s, \text { return }
\end{align*}
$$

Progress thm. for PSTATE

Progress the. for PSTATE

$$
\begin{aligned}
& \forall f \text { t wp. } \\
& \quad \vdash f: \text { PSTATE } t \text { wp } \\
& \quad \Rightarrow
\end{aligned}
$$

$$
\text { 1. } \exists \mathrm{v} . \mathrm{f}=\text { return } \mathrm{v}
$$

$$
V
$$

$$
\text { 2. } \forall \Phi \text { s . } \exists \Phi^{\prime} s^{\prime} f^{\prime} .(\Phi, s, f) \longrightarrow\left(\Phi^{\prime}, s^{\prime}, f^{\prime}\right)
$$

Preservation thm. for PSTATE

Preservation thm. for PSTATE

$$
\begin{aligned}
& \forall f t w p \Phi s \Phi^{\prime} s^{\prime} f^{\prime} . \\
& \vdash f: \operatorname{PSTATE} t \mathrm{wp} \wedge(\Phi, s) w f \wedge \\
& (\Phi, S, f) \longrightarrow\left(\Phi^{\prime}, S^{\prime}, f^{\prime}\right) \\
& \Rightarrow \\
& \forall \text { post . } \Phi \subseteq \text { wp post s } \\
& \Rightarrow \\
& \Phi \subseteq \Phi^{\prime} \wedge \quad\left(\Phi^{\prime}, S^{\prime}\right) w f \wedge \\
& \square \Phi \vDash \operatorname{rel} \mathrm{~S} \mathrm{~s}^{\prime} \wedge \\
& \exists w p^{\prime} \cdot \vdash f^{\prime}: \text { PSTATE } t w p^{\prime} \wedge \\
& \Phi^{\prime} \vDash w^{\prime} \text { post s' }
\end{aligned}
$$

Preservation thm. for PSTATE

$$
\begin{aligned}
& \forall f t w p \Phi s \Phi^{\prime} s^{\prime} f^{\prime} . \\
& \vdash f: \operatorname{PSTATE} t w p \wedge(\Phi, s) w f \wedge \\
& (\Phi, S, f) \longrightarrow\left(\Phi^{\prime}, S^{\prime}, f^{\prime}\right) \\
& \Rightarrow \quad \vee \square \Phi=\square\left(\text { fun } x \rightarrow \varphi_{1} x \wedge \ldots \wedge \varphi_{n} x\right) \\
& \forall \text { post . } \square \vDash \text { wp post } s \\
& \Rightarrow \\
& \Phi \subseteq \Phi^{\prime} \wedge \quad\left(\Phi^{\prime}, S^{\prime}\right) w f \wedge \\
& ■ \notin \operatorname{rel} \mathrm{~s}^{\prime} \wedge \\
& \exists w^{\prime} \cdot \vdash f^{\prime}: \text { PSTATE } t w p ' \wedge \\
& \square^{\prime} \vDash w^{\prime} \text { post } s^{\prime}
\end{aligned}
$$

The proof requires an inversion property (in empty context)
$\frac{\vDash ■ \varphi \Rightarrow \llbracket \psi}{\vDash \text { forall } \times \cdot \varphi \times \Rightarrow \psi \times}(-$-inv $)$
We justify (\quad - inv) via a cut-elimination in sequent calculus

- where we have a single derivation rule for \square

$$
\begin{aligned}
& \mathrm{G} \vdash \Phi_{1} \\
& \mathrm{G} \vdash \Phi_{2} \\
& \mathrm{G}, \mathrm{x} \mid \Phi_{1}, \varphi_{1} \mathrm{x}, \ldots, \varphi_{\mathrm{n}} \mathrm{x} \vdash \psi_{1} \mathrm{x}, \ldots, \psi_{\mathrm{m}} \mathrm{x}, \Phi_{2} \\
& \hline \mathrm{G} \mid \Phi_{1}, \square \varphi_{1}, \ldots, \llbracket \varphi_{\mathrm{n}} \vdash \llbracket \psi_{1}, \ldots, ■ \psi_{\mathrm{m}}, \Phi_{2}
\end{aligned}
$$

Future work: model theory of \square

Conclusion

Conclusion

In this talk we covered:

- preorder-respecting state monads in F^{*}
- their formal metatheory
- some of the examples of these monads

Conclusion

In this talk we covered:

- preorder-respecting state monads in F^{*}
- their formal metatheory
- some of the examples of these monads

Ongoing and future work:

- change F*'s libraries to use PSTATE
- PSTATE in DM4F setting? (how to reify it safely?)
- model theory of \quad ■
- categorical semantics of Dijkstra monads (rel. monads.)

Dijkstra monad T in CT?

Dijkstra monad T in CT?

Type formation rule for a Dijkstra monad

$$
\frac{\Gamma \vdash t: \text { Type } \quad \Gamma \vdash w p: W P A}{\Gamma \vdash T t w p: \text { Type }}
$$

The unit of a Dijkstra monad

$$
\frac{\Gamma \vdash e: t}{\Gamma \vdash \operatorname{return} e: T t(W P . r e t u r n ~ e)}
$$

The Kleisli extension of a Dijkstra monad

$$
\frac{\Gamma \vdash M: T t_{1} w p_{1} \quad \Gamma \vdash t_{2} \quad \Gamma, x: t_{1} \vdash N: T t_{2} w p_{2}}{\Gamma \vdash \text { bind } e_{1} x . e_{2}: T t_{2}\left(W P . \text { bind } w p_{1} x . w p_{2}\right)}
$$

Dijkstra monad T in CT?

We'll work in the setting of closed comprehension cats., i.e.,

- \mathcal{B} models contexts
- V models types in context
- terms in context Γ are modeled as global elements in $\mathcal{V}_{\llbracket\ulcorner\rrbracket}$
- \mathcal{P} is fully faithful

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

- a split fibred monad WP : P \rightarrow P
- a functor $T: \mathcal{V} \rightarrow \mathcal{V}$

$$
\text { s.t. } p \circ T=\{-\} \circ W P
$$

T preserves Cartesian morphisms on-the-nose

Can we model the unit and Kleisli ext. for T in known terms?

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

- a split fibred monad WP : P $\rightarrow P$
- a functor $T: \mathcal{V} \rightarrow \mathcal{V}$ dependency on WP s.t. $p \circ T=\{-\} \circ W P$
T preserves Cartesian morphisms on-the-nose

Can we model the unit and Kleisli ext. for T in known terms?

Dijkstra monad T in CT?

For modeling Dijkstra monads, we assume:

- a split fibred monad WP : $P \rightarrow p$
- a functor $T: \mathcal{V} \rightarrow \mathcal{V}$
dependency on WP s.t. $\quad p \circ T=\{-\} \circ W P$
T preserves Cartesian morphisms on-the-nose

Can we model the unit and Kleisli ext. for T in known terms?

Dijkstra monad T in $\mathcal{B}^{\rightarrow}$

Dijkstra monad T in $\mathcal{B}^{\rightarrow}$

The unit of a Dijkstra monad

Dijkstra monad T in $\mathcal{B}^{\rightarrow}$

The unit of a Dijkstra monad

The Kleisli extension of a Dijkstra monad

Dijkstra monad T in $\mathcal{B}^{\rightarrow}$

The unit of a Dijkstra monad

$$
\{A\} \longrightarrow\{T(A)\}
$$

This data and the associated laws are precisely those for a relative monad

$$
\begin{aligned}
& \widehat{T}: \mathcal{V} \longrightarrow \overline{\operatorname{mim}}(\{-\}) \downarrow\{-\} \\
& \widehat{T}(A) \stackrel{\text { def }}{=}\{T(A)\} \xrightarrow{\pi_{T(A)}}\{W P(A)\} \\
& \text { on }
\end{aligned}
$$

$$
\begin{aligned}
& J: \mathcal{V} \longrightarrow \overline{\operatorname{im}}(\{-\}) \downarrow\{-\} \\
& J(A) \stackrel{\text { def }}{=}\{A\} \xrightarrow{\operatorname{id}_{\{A\}}}\{A\}
\end{aligned}
$$

onad

