
Comodels as a gateway for
interacting with the external world

Danel Ahman

(joint work with Andrej Bauer)

Shonan, 28 March 2019

Comodels as a gateway for
interacting with the external world

Danel Ahman

(joint work with Andrej Bauer)

Shonan, 28 March 2019

Computational effects in FP

• Using monads (as in Haskell)

type St a = S t r i n g → (a , S t r i n g)

f : : St a → St (a , a)
f c = c >>= (\ x → c >>= (\ y → return (x , y)))

• Using alg. effects and handlers (as in Eff, Frank, Koka)

e f f e c t Get : i n t
e f f e c t Put : i n t → u n i t

(∗ : i n t → a∗ i n t !{} ∗)
l e t g (c : u n i t → a !{Get , Put }) =

with s t h handle (perform (Put 42) ; c ())

• Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?

Computational effects in FP

• Using monads (as in Haskell)

type St a = S t r i n g → (a , S t r i n g)

f : : St a → St (a , a)
f c = c >>= (\ x → c >>= (\ y → return (x , y)))

• Using alg. effects and handlers (as in Eff, Frank, Koka)

e f f e c t Get : i n t
e f f e c t Put : i n t → u n i t

(∗ : i n t → a∗ i n t !{} ∗)
l e t g (c : u n i t → a !{Get , Put }) =

with s t h handle (perform (Put 42) ; c ())

• Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?

Computational effects in FP

• Using monads (as in Haskell)

type St a = S t r i n g → (a , S t r i n g)

f : : St a → St (a , a)
f c = c >>= (\ x → c >>= (\ y → return (x , y)))

• Using alg. effects and handlers (as in Eff, Frank, Koka)

e f f e c t Get : i n t
e f f e c t Put : i n t → u n i t

(∗ : i n t → a∗ i n t !{} ∗)
l e t g (c : u n i t → a !{Get , Put }) =

with s t h handle (perform (Put 42) ; c ())

• Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?

External world in FP
• Declare a signature of monads or algebraic effects, e.g.,

(∗ System . IO ∗)

type IO a
o p e n F i l e : : F i l e P a t h → IOMode → IO Handle

(∗ p e r v a s i v e s . e f f ∗)

e f f e c t RandomInt : i n t → i n t
e f f e c t RandomFloat : f l o a t → f l o a t

• And then treat them specially in the compiler, e.g.,

(∗ s r c / r u n t i m e / e v a l . ml ∗)

l e t r e c t o p h a n d l e op =
match op with
| . . .

External world in FP

External world in FPExternal world in FP

External world in FPExternal world in FP
External world in FP

External world in FPExternal world in FP
External world in FPExternal world in FP

External world in FPExternal world in FP
External world in FPExternal world in FP

This talk — a principled (co)algebraic approach!

Another issue — linearity or lack thereof

• l e t f (s : s t r i n g) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h

Another issue — linearity or lack thereof

• l e t f (s : s t r i n g) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h

Another issue — linearity or lack thereof

• l e t f (s : s t r i n g) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h (∗ f h not open ! ∗)

• Even worse when we wrap f in a handler?

l e t h = handler
| e f f e c t (FWrite f h s k) → return ()

l e t g ’ s =
with h handle f ()

Another issue — linearity or lack thereof

• l e t f (s : s t r i n g) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h (∗ f h not open ! ∗)

• Even worse when we wrap f in a handler?

l e t h = handler
| e f f e c t (FWrite f h s k) → return ()

l e t g ’ s =
with h handle f ()

Another issue — linearity or lack thereof

• l e t f (s : s t r i n g) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h (∗ f h not open ! ∗)

• Even worse when we wrap f in a handler?

l e t h = handler
| e f f e c t (FWrite f h s k) → return ()

l e t g ’ s =
with h handle f () (∗ d a n g l i n g f h ! ∗)

So, how could we solve these issues?

• We could try using existing PL techniques, e.g.,

• Modules and abstraction, e.g., System.IO

type IO a

h C l o s e : : Handle → IO ()

• Linear (and non-linear) types and effects

l i n e a r type f h a n d l e

e f f e c t FClose : (l i n e a r f h a n d l e) → u n i t

l i n e a r e f f e c t FClose : f h a n d l e → u n i t

• Handlers with finally clauses

• Problem: They don’t really capture the essence of the problem

So, how could we solve these issues?

• We could try using existing PL techniques, e.g.,

• Modules and abstraction, e.g., System.IO

type IO a

h C l o s e : : Handle → IO ()

• Linear (and non-linear) types and effects

l i n e a r type f h a n d l e

e f f e c t FClose : (l i n e a r f h a n d l e) → u n i t

l i n e a r e f f e c t FClose : f h a n d l e → u n i t

• Handlers with finally clauses

• Problem: They don’t really capture the essence of the problem

So, how could we solve these issues?

• We could try using existing PL techniques, e.g.,

• Modules and abstraction, e.g., System.IO

type IO a

h C l o s e : : Handle → IO ()

• Linear (and non-linear) types and effects

l i n e a r type f h a n d l e

e f f e c t FClose : (l i n e a r f h a n d l e) → u n i t

l i n e a r e f f e c t FClose : f h a n d l e → u n i t

• Handlers with finally clauses

• Problem: They don’t really capture the essence of the problem

So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide

So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide

So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide

So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide

So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)
• With the System.IO module abstraction ensuring that

• We can’t get our hands on RealWorld — it’s not material

• The RealWorld is affected linearly

• We don’t ask more from RealWorld than it can provide

But wait a minute! RealWorld looks a lot like a comodel!

hGetLine : (Handle,RealWorld)→ (String,RealWorld)

hClose : (Handle,RealWorld)→ ((),RealWorld)

Important: co-operations (hClose) make a promise to return!

Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)

Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)

Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)

Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)

Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)

Towards a general programming abstraction

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h (∗ i n IO ∗)

Now external world explicit, but dangling fh etc still possible

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) (∗ i n IO ∗)

f i n a l l y (f c l o s e f h)

Better, but have to explicitly open and thread through fh

• Solution: Modular treatment of external worlds

Towards a general programming abstraction

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h (∗ i n IO ∗)

Now external world explicit, but dangling fh etc still possible

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) (∗ i n IO ∗)

f i n a l l y (f c l o s e f h)

Better, but have to explicitly open and thread through fh

• Solution: Modular treatment of external worlds

Towards a general programming abstraction

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h (∗ i n IO ∗)

Now external world explicit, but dangling fh etc still possible

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) (∗ i n IO ∗)

f i n a l l y (f c l o s e f h)

Better, but have to explicitly open and thread through fh

• Solution: Modular treatment of external worlds

Towards a general programming abstraction

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) ;
f c l o s e f h (∗ i n IO ∗)

Now external world explicit, but dangling fh etc still possible

• l e t f (s : s t r i n g) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h (s ˆ s) (∗ i n IO ∗)

f i n a l l y (f c l o s e f h)

Better, but have to explicitly open and thread through fh

• Solution: Modular treatment of external worlds

Modular treatment of external worlds

• For example

Pure IO77

ww

gg

''

(ext. world)

Fh IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

•

Modular treatment of external worlds

• For example

Pure IO77

ww

gg

''

(ext. world)

Fh
OO

��

IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

•

Modular treatment of external worlds

• For example

Pure IO77

ww

OO

��

gg

''

(ext. world)

Fh
OO

��

IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

•

Modular treatment of external worlds

• For example

Pure
@@

��

IO77

ww

OO

��

gg

''

(ext. world)

Fh
OO

��

IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

•

Modular treatment of external worlds

• For example

Pure
@@

��

IO77

ww

OO

��

gg

''

(ext. world)

Fh
OO

��

IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

• Observation: IO←→ Fh and other ←→ look a lot like lenses

Comodels as a gateway to the external world

l e t f (s : s t r i n g) =
using

Fh @ (f o p e n o f i o ” f o o . t x t ”)
cohandle

f w r i t e o f f h (s ˆ s)
f i n a l l y

x @ f h → f c l o s e o f i o f h

Comodels as a gateway to the external world

l e t f (s : s t r i n g) =
using

Fh @ (f o p e n o f i o ” f o o . t x t ”)
cohandle

f w r i t e o f f h (s ˆ s)
f i n a l l y

x @ f h → f c l o s e o f i o f h

Comodels as a gateway to the external world

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using

Fh @ (f o p e n o f i o ” f o o . t x t ”) (∗ i n IO ∗)
cohandle

f w r i t e o f f h (s ˆ s) (∗ i n Fh ∗)
f i n a l l y

x @ f h → f c l o s e o f i o f h (∗ i n IO ∗)

where

Fh = (∗ W = f h a n d l e ∗)
{ c o f r e a d @ f h → . . . ,

c o f w r i t e s @ f h → f w r i t e o f i o s f h ;
return (() , f h) }

(∗ c o f r e a d : (u n i t ∗ W) → (s t r i n g ∗ W) ∗)
(∗ c o f w r i t e : (s t r i n g ∗ W) → (u n i t ∗ W) ∗)

Comodels as a gateway to the external world

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using

Fh @ (f o p e n o f i o ” f o o . t x t ”) (∗ i n IO ∗)
cohandle

f w r i t e o f f h (s ˆ s) (∗ i n Fh ∗)
f i n a l l y

x @ f h → f c l o s e o f i o f h (∗ i n IO ∗)

where

Fh = (∗ W = f h a n d l e ∗)
{ c o f r e a d @ f h → . . . ,

c o f w r i t e s @ f h → f w r i t e o f i o s f h ;
return (() , f h) }

(∗ c o f r e a d : (u n i t ∗ W) → (s t r i n g ∗ W) ∗)
(∗ c o f w r i t e : (s t r i n g ∗ W) → (u n i t ∗ W) ∗)

Modular treatment of worlds (IO←→ Fh←→ Str)

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using Fh @ (f o p e n o f i o ” f o o . t x t ”)
cohandle

us ing S t r @ (f r e a d o f f h ()) (∗ i n Fh ∗)
cohandle

w r i t e o f s t r (s ˆ s) (∗ i n S t r ∗)
f i n a l l y

@ s → f w r i t e o f f h s

f i n a l l y
@ f h → f c l o s e o f i o f h

where

S t r = { c o w r i t e s @ s ’ → (∗ W = s t r i n g ∗)
return (() , s ’ ˆ s) }

Modular treatment of worlds (IO←→ Fh←→ Str)

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using Fh @ (f o p e n o f i o ” f o o . t x t ”)
cohandle

us ing S t r @ (f r e a d o f f h ()) (∗ i n Fh ∗)
cohandle

w r i t e o f s t r (s ˆ s) (∗ i n S t r ∗)
f i n a l l y

@ s → f w r i t e o f f h s

f i n a l l y
@ f h → f c l o s e o f i o f h

where

S t r = { c o w r i t e s @ s ’ → (∗ W = s t r i n g ∗)
return (() , s ’ ˆ s) }

Tracking the external world usage (IO←→ Stats)

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using

S t a t s @ (l e t f h = f o p e n o f i o ” f o o . t x t ” i n
return (fh , 0))

cohandle
f w r i t e o f s t a t s (s ˆ s)

f i n a l l y
@ (fh , c) →

l e t fh ’ = f o p e n o f i o ” s t a t s . t x t ” i n
f w r i t e o f i o fh ’ c ; f c l o s e o f i o fh ’ ;
f c l o s e o f i o f h

where

S t a t s = (∗ W = f h a n d l e ∗ nat ∗)
{ c o f w r i t e s @ (fh , c) → . . . ,

c o r e s e t @ (fh , c) → return (() , (fh , 0)) }

• Can also track results of nondet./prob. choices, etc

Tracking the external world usage (IO←→ Stats)

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using

S t a t s @ (l e t f h = f o p e n o f i o ” f o o . t x t ” i n
return (fh , 0))

cohandle
f w r i t e o f s t a t s (s ˆ s)

f i n a l l y
@ (fh , c) →

l e t fh ’ = f o p e n o f i o ” s t a t s . t x t ” i n
f w r i t e o f i o fh ’ c ; f c l o s e o f i o fh ’ ;
f c l o s e o f i o f h

where

S t a t s = (∗ W = f h a n d l e ∗ nat ∗)
{ c o f w r i t e s @ (fh , c) → . . . ,

c o r e s e t @ (fh , c) → return (() , (fh , 0)) }

• Can also track results of nondet./prob. choices, etc

Tracking the external world usage (IO←→ Stats)

l e t f (s : s t r i n g) = (∗ i n IO ∗)
using

S t a t s @ (l e t f h = f o p e n o f i o ” f o o . t x t ” i n
return (fh , 0))

cohandle
f w r i t e o f s t a t s (s ˆ s)

f i n a l l y
@ (fh , c) →

l e t fh ’ = f o p e n o f i o ” s t a t s . t x t ” i n
f w r i t e o f i o fh ’ c ; f c l o s e o f i o fh ’ ;
f c l o s e o f i o f h

where

S t a t s = (∗ W = f h a n d l e ∗ nat ∗)
{ c o f w r i t e s @ (fh , c) → . . . ,

c o r e s e t @ (fh , c) → return (() , (fh , 0)) }

• Can also track results of nondet./prob. choices, etc

The external world can also be pure (Pure←→ Str)

l e t f (s : s t r i n g) = (∗ i n Pure ∗)
using

S t r @ (return ” d e f a u l t v a l u e ”)
cohandle

. . .
l e t s = r e a d o f s t r () i n
i f (s == ” f o o ”)
then (. . . ; w r i t e o f s t r ” bar ” ; . . .)
e l s e (. . .)
. . .

f i n a l l y
x @ s → return x

where

S t r = (∗ W = s t r i n g ∗)
{ c o r e a d @ s → return (s , s) ,

c o w r i t e s @ → return (() , s) }

The external world can also be pure (Pure←→ Str)

l e t f (s : s t r i n g) = (∗ i n Pure ∗)
using

S t r @ (return ” d e f a u l t v a l u e ”)
cohandle

. . .
l e t s = r e a d o f s t r () i n
i f (s == ” f o o ”)
then (. . . ; w r i t e o f s t r ” bar ” ; . . .)
e l s e (. . .)
. . .

f i n a l l y
x @ s → return x

where

S t r = (∗ W = s t r i n g ∗)
{ c o r e a d @ s → return (s , s) ,

c o w r i t e s @ → return (() , s) }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1 B1 , . . . , opn : An Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }

So what’s happening more formally?

• Typing judgements

Γ ` v : A Γ `ω c : A

• The two central typing rules are

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

and

op : Aop Bop ∈ ω Γ ` v : Aop

Γ `ω ôp v : Bop

So what’s happening more formally?

• Typing judgements

Γ ` v : A Γ `ω c : A

• The two central typing rules are

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

and

op : Aop Bop ∈ ω Γ ` v : Aop

Γ `ω ôp v : Bop

So what’s happening more formally?

• Typing judgements

Γ ` v : A Γ `ω c : A

• The two central typing rules are

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

and

op : Aop Bop ∈ ω Γ ` v : Aop

Γ `ω ôp v : Bop

Denotational semantics

• Term interpretation looks very similar to alg. effects:

JΓ ` v : AK : JΓK −→ JAK JΓ `ω c : AK : JΓK −→ Tω JAK

• un-cohandled operations wait for a suitable external world!

• The interesting part is the interpretation of cohandling

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

which is based on M&S’s linear state-passing translation, i.e.,

JDK ∈ Comodω′(Kleisli(Tω))

cohandle withJDK : Tω′ JAK −→
(
JWDK→ Tω (JAK× JWDK)

)

Denotational semantics

• Term interpretation looks very similar to alg. effects:

JΓ ` v : AK : JΓK −→ JAK JΓ `ω c : AK : JΓK −→ Tω JAK

• un-cohandled operations wait for a suitable external world!

• The interesting part is the interpretation of cohandling

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

which is based on M&S’s linear state-passing translation, i.e.,

JDK ∈ Comodω′(Kleisli(Tω))

cohandle withJDK : Tω′ JAK −→
(
JWDK→ Tω (JAK× JWDK)

)

Denotational semantics

• Term interpretation looks very similar to alg. effects:

JΓ ` v : AK : JΓK −→ JAK JΓ `ω c : AK : JΓK −→ Tω JAK

• un-cohandled operations wait for a suitable external world!

• The interesting part is the interpretation of cohandling

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

which is based on M&S’s linear state-passing translation, i.e.,

JDK ∈ Comodω′(Kleisli(Tω))

cohandle withJDK : Tω′ JAK −→
(
JWDK→ Tω (JAK× JWDK)

)

Operational semantics

• Idea is to consider configurations
(−−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ((

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0)) , c

) w� ((
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1)) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w]

) w� ((
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
• The interpretation of operations uses the co-operations of Cs

Operational semantics

• Idea is to consider configurations
(−−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ((

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0)) , c

) w� ((
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1)) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w]

) w� ((
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
• The interpretation of operations uses the co-operations of Cs

Operational semantics

• Idea is to consider configurations
(−−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ((

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0)) , c

) w� ((
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1)) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w]

) w� ((
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
• The interpretation of operations uses the co-operations of Cs

Operational semantics

• Idea is to consider configurations
(−−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ((

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0)) , c

) w� ((
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1)) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w]

) w� ((
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
• The interpretation of operations uses the co-operations of Cs

Operational semantics

• Idea is to consider configurations
(−−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ((

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0)) , c

) w� ((
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1)) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w]

) w� ((
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′)
• The interpretation of operations uses the co-operations of Cs

But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

• Second: What if the outer comodel beaks its promise?

• E.g., IO lost connection to the HDD where “foo.txt” was

• Idea:
• Use algebraic effects to communicate downwards

• (Algebraic ops. only allowed to appear in co-operations)

• finally acts as a handler for broken promises

us ing (∗ IO ←→ Fh ∗)
Fh @ c i

cohandle
f w r i t e o f d s ; (∗ c o f w r i t e o f i o throws e ∗)
f r e a d ()

f i n a l l y
| x @ w → c f
| throw e → c d o s o m e c l e a n u p
| op x k → . . .

But what about alg. effects and handlers?

• Second: What if the outer comodel beaks its promise?

• E.g., IO lost connection to the HDD where “foo.txt” was

• Idea:
• Use algebraic effects to communicate downwards

• (Algebraic ops. only allowed to appear in co-operations)

• finally acts as a handler for broken promises

us ing (∗ IO ←→ Fh ∗)
Fh @ c i

cohandle
f w r i t e o f d s ; (∗ c o f w r i t e o f i o throws e ∗)
f r e a d ()

f i n a l l y
| x @ w → c f
| throw e → c d o s o m e c l e a n u p
| op x k → . . .

But what about alg. effects and handlers?

• Second: What if the outer comodel beaks its promise?

• E.g., IO lost connection to the HDD where “foo.txt” was

• Idea:
• Use algebraic effects to communicate downwards

• (Algebraic ops. only allowed to appear in co-operations)

• finally acts as a handler for broken promises

us ing (∗ IO ←→ Fh ∗)
Fh @ c i

cohandle
f w r i t e o f d s ; (∗ c o f w r i t e o f i o throws e ∗)
f r e a d ()

f i n a l l y
| x @ w → c f
| throw e → c d o s o m e c l e a n u p
| op x k → . . .

But what about alg. effects and handlers?

• Second: What if the outer comodel beaks its promise?

• E.g., IO lost connection to the HDD where “foo.txt” was

• Idea:
• Use algebraic effects to communicate downwards

• (Algebraic ops. only allowed to appear in co-operations)

• finally acts as a handler for broken promises

us ing (∗ IO ←→ Fh ∗)
Fh @ c i

cohandle
f w r i t e o f d s ; (∗ c o f w r i t e o f i o throws e ∗)
f r e a d ()

f i n a l l y
| x @ w → c f
| throw e → c d o s o m e c l e a n u p
| op x k → . . .

Conclusions

• Comodels as a gateway for interacting with the external world

• System.IO , Koka’s initially & finally , Python’s with , . . .

• Could also be convenient for general FFI

f : A −→ B ∈ OCaml

f : A×WOCaml −→ B ×WOCaml ∈ OCaml

Some ongoing work

• Interaction with algebraic effects and (multi-)handlers

• Clarify the connection with (effectful) lenses

• Combinatorics of comodels and their lens-like relationships

Conclusions

• Comodels as a gateway for interacting with the external world

• System.IO , Koka’s initially & finally , Python’s with , . . .

• Could also be convenient for general FFI

f : A −→ B ∈ OCaml

f : A×WOCaml −→ B ×WOCaml ∈ OCaml

Some ongoing work

• Interaction with algebraic effects and (multi-)handlers

• Clarify the connection with (effectful) lenses

• Combinatorics of comodels and their lens-like relationships

Conclusions

• Comodels as a gateway for interacting with the external world

• System.IO , Koka’s initially & finally , Python’s with , . . .

• Could also be convenient for general FFI

f : A −→ B ∈ OCaml

f : A×WOCaml −→ B ×WOCaml ∈ OCaml

Some ongoing work

• Interaction with algebraic effects and (multi-)handlers

• Clarify the connection with (effectful) lenses

• Combinatorics of comodels and their lens-like relationships

