Comodels as a gateway for
interacting with the external world

Danel Ahman

(joint work with Andrej Bauer)

Shonan, 28 March 2019

Comodels as a gateway for
interacting with the external world

Danel Ahman

(joint work with Andrej Bauer)

A CAUTION

WORK IN
PROGRESS

Shonan, 28 March 2019

Computational effects in FP

Computational effects in FP

e Using monads (as in HASKELL)

type St a = String — (a,String)

f St a —» St (a,a)
fc=c>>= (\x > c >>= (\y — return (x,y)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : int
effect Put : int — unit
(*: int — axint!{} =x)
let g (c:unit — a!{Get,Put}) =
with st_h handle (perform (Put 42); c ())

Computational effects in FP
e Using monads (as in HASKELL)
type St a = String — (a,String)

St a — St (a,a)

f
fe=c>>= (\x > c>>= (\y = return (x,y)))

e Using alg. effects and handlers (as in EFF, FRANK, KOKA)

effect Get : int
effect Put : int — unit
(*: int — axint!{} =x)
let g (c:unit — a!{Get,Put}) =
with st_h handle (perform (Put 42); c ())

e Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?

External world in FP

e Declare a signature of monads or algebraic effects, e.g.,
(*+ System.lO x)

type 10 a
openFile :: FilePath — IOMode — 10 Handle

(*+ pervasives.eff x)

effect Randomlint : int — int
effect RandomFloat : float — float

e And then treat them specially in the compiler, e.g.,

(*+ src/runtime/eval.ml x)

let rec top_handle op =
match op with

External world in FP

External world in FP

I Ohad 8 12:17pPM
Can | do file 10 (or just O) in Eff?

External world in FP

I Ohad & 12:17 PMm
Can | do file 10 (or just O) in Eff? E Ziga Luksi¢ 12:18 PMm
not currently

External world in FP

— l Ohad 8 12:17PM
~2 I Canldofile IO (or just O) in Eff? " Ziga Luksi¢ 12:18 PM

not currently

l Ohad 8 s:35pM
So here's the hack | added{We should do something a bit more principled

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;Open_append
;0pen_creat
;O0pen_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)

External world in FP

— l Ohad & 12:17 PMm
Can | do file 10 (or just O) in Eff? E Ziga Luksi¢ 12:18 PMm
not currently

l Ohad 8 s:35pM
So here's the hack | added{We should do something a bit more principled

In pervasives.eff :

effect Write : (string*string) -> unit

in eval.ml,under let rec top_handle op = add the case:

I "Write" ->
(match v with
| V.Tuple vs ->
let (file_name :: str :: _) = List.map V.to_str vs in
let file_handle = open_out_gen
[Open_wronly
;Open_append
;0pen_creat
;O0pen_text
] 00666 file_name in
Printf.fprintf file_handle "%s" str;
close_out file_handle;
top_handle (k V.unit_value)

This talk — a principled (co)algebraic approach!

Another issue — linearity or lack thereof

Another issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt" in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh

Another issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

Another issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

e Even worse when we wrap f in a handler?

let h = handler
| effect (FWrite fh s k) — return ()

let g' s =
with h handle f ()

Another issue — linearity or lack thereof

o let f (s:string) =
let fh = fopen "foo.txt” in
fwrite fh (s”s);
fclose fh;
return fh

let g s =
let fh = f s in fread fh (x fh not open ! x)

e Even worse when we wrap f in a handler?

let h = handler
| effect (FWrite fh s k) — return ()

let g' s =
with h handle f () (* dangling fh | x)

So, how could we solve these issues?

So, how could we solve these issues?

e We could try using existing PL techniques, e.g.,

e Modules and abstraction, e.g., System.lO

type 10 a

hClose :: Handle — 10 ()

e Linear (and non-linear) types and effects

linear type fhandle
effect FClose : (linear fhandle) — unit

linear effect FClose : fhandle — unit

e Handlers with finally clauses

So, how could we solve these issues?

e We could try using existing PL techniques, e.g.,

e Modules and abstraction, e.g., System.|O

type 10 a

hClose :: Handle — 10 ()

e Linear (and non-linear) types and effects

linear type fhandle
effect FClose : (linear fhandle) — unit

linear effect FClose : fhandle — unit

e Handlers with finally clauses

e Problem: They don't really capture the essence of the problem

So, what is that essence then?

So, what is that essence then?

o Let's look at HASKELL's |0 monad again

So, what is that essence then?

o Let's look at HASKELL's |0 monad again
e A common explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as

(a, RealWorld) — (b, RealWorld)

So, what is that essence then?

o Let's look at HASKELL's |0 monad again

e A common explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as

(a, RealWorld) — (b, RealWorld)

e With the System.|O module abstraction ensuring that
e \We cannot get our hands on RealWorld (no get and put)
e We have the impression of RealWorld used linearly

e We don’t ask more from RealWorld than it can provide

So, what is that essence then?

e Let's look at HASKELL's IO monad again

e A common explanation is to think of functions

a—I10b

as
a — (RealWorld — (b, RealWorld))

which is the same as
(a, RealWorld) — (b, RealWorld)

But wait a minute! RealWorld looks a lot like a comodell!
hGetLine : (Handle, RealWorld) — (String, RealWorld)
hClose : (Handle, RealWorld) — ((), RealWorld)

Important: co-operations (hClose) make a promise to return!

Refresher: what’'s comodel?

Refresher: what’'s comodel?

e A signature X is a set of operation symbols op : A, ~ By,

Refresher: what’'s comodel?
e A signature X is a set of operation symbols op : A, ~ By,

e A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Asp X MP® — M}opes)

Refresher: what’s comodel?
e A signature X is a set of operation symbols op : A, ~ By,
e A model/algebra/handler M of ¥ is given by
M= {(M:Set, {opy: Asp X MP® — M}opes)
e A comodel/coalgebra/cohandler W of ¥ is given by
W= (W:Set, {opy : Aopp X W — Bopy X Whopes)

e Intutively, comodels describe evolution of the world W

Refresher: what’s comodel?
e A signature X is a set of operation symbols op : A, ~ By,
e A model/algebra/handler M of ¥ is given by

M= {(M:Set, {opy: Asp X MP® — M}opes)

e A comodel/coalgebra/cohandler W of ¥ is given by
W= (W:Set, {opy : Aopp X W — Bopy X Whopes)

e Intutively, comodels describe evolution of the world W

e Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

o Stateful runners of effectful programs (Uustalu)

e Linear state-passing translation (Mggelberg and Staton)

o Top-level behaviour of alg. effects in EFF v2 (Bauer & Pretnar)

Towards a general programming abstraction

Towards a general programming abstraction

o let f (s:string) =
using |0 cohandle
let fh = fopen "foo.txt” in
fwrite fh (s"s);
fclose fh (x in 10 x)

Now external world explicit, but dangling fh etc still possible

Towards a general programming abstraction

o let f (s:string) =
using |0 cohandle
let fh = fopen "foo.txt” in
fwrite fh (s"s);
fclose fh (x in 10 x)

Now external world explicit, but dangling fh etc still possible

o let f (s:string) =
using 10 cohandle
let fh = fopen "foo.txt" in
fwrite fh (s”s) (+ in 10 x)
finally (fclose fh)

Better, but have to explicitly open and thread through fh

Towards a general programming abstraction

o let f (s:string) =
using |0 cohandle
let fh = fopen "foo.txt” in
fwrite fh (s"s);
fclose fh (x in 10 x)

Now external world explicit, but dangling fh etc still possible

o let f (s:string) =
using 10 cohandle
let fh = fopen "foo.txt" in
fwrite fh (s”s) (+ in 10 x)
finally (fclose fh)

Better, but have to explicitly open and thread through fh

e Solution: Modular treatment of external worlds

Modular treatment of external worlds

e For example

/ 10 (ext. world)
Fh \ (inner world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”

e Fh — 10 — “call fclose with stored fh”

Modular treatment of external worlds

e For example

10 (ext. world)

Ff/ .

(inner world)

Str (inner® world)
e Fh — “world which consists of exactly one fh"
e IO —Fh — “call fopen with foo.txt , store returned fh"”
e Fh — 10 — “call fclose with stored fh"”

o Str — ‘“world that is blissfully unaware of fh"

Modular treatment of external worlds

e For example

/ 10 (ext. world)

Fh 10 + CallStb . (inner world)
Str (inner® world)

e Fh — “world which consists of exactly one fh"

e IO —Fh — “call fopen with foo.txt , store returned fh"”

e Fh — 10 — “call fclose with stored fh"

o Str — ‘“world that is blissfully unaware of fh"

Modular treatment of external worlds

e For example

Pure/ 10 (ext. world)

Fh 10 + CallStb . (inner world)
Str (inner® world)

e Fh — “world which consists of exactly one fh"

e IO —Fh — “call fopen with foo.txt , store returned fh"”

e Fh — 10 — “call fclose with stored fh"

o Str — ‘“world that is blissfully unaware of fh"

Modular treatment of external worlds

e For example

Pure/ 10 (ext. world)

Fh 10 + CallStb . (inner world)
Str (inner® world)

e Fh — “world which consists of exactly one fh"

e IO —Fh — “call fopen with foo.txt , store returned fh"”

e Fh — 10 — “call fclose with stored fh"

o Str — ‘“world that is blissfully unaware of fh"

e Observation: |0 <— Fh and other <— look a lot like lenses

Comodels as a gateway to the external world

Comodels as a gateway to the external world

let f (s:string) =

using

Fh @ (fopen_of_io "foo.txt")
cohandle

fwrite_of_fh (s”s)
finally

x @ fh — fclose_of_io fh

Comodels as a gateway to the external world

let f (s:string) = (x in
using
Fh @ (fopen_of_io "foo.txt") (in
cohandle
fwrite_of_fh (s”s) (+ in
finally

x @ fh — fclose_of_io fh (% in

Comodels as a gateway to the external world

let f (s:string) = (+« in 10
using
Fh @ (fopen_of_io "foo.txt") (+ in 10
cohandle
fwrite_of _fh (s"s) (* in Fh
finally
x @ fh — fclose_of_io fh (+x in 10
where
Fh = (x W= fhandle

{ co_fread _ @ fh —» ...
co_fwrite s @ fh — fwrite_of_io s fh;
return ((),fh) }

(x co_fread : (unit x W) — (string * W)
(x co_fwrite : (string * W) — (unit x W)

Modular treatment of worlds (IO «— Fh «— Str)

Modular treatment of worlds (IO «— Fh «— Str)

let f (s:string) = (+ in 10 x)
using Fh @ (fopen_of_io "foo.txt")
cohandle
using Str @ (fread_of_fh ()) (+ in Fh x)
cohandle
write_of_str (s”s) (x in Str x)
finally

_ 0@ s — fwrite_of_fh s

finally
_ @ fh —» fclose_of_io fh
where
Str = { co_write s @ s’ — (x W= string x)

return ((),s'"s) }

Tracking the external world usage (10 <— Stats)

Tracking the external world usage (10 <— Stats)

let f (s:string) = (x in 10 x)
using
Stats @ (let fh = fopen_of_io "foo.txt” in
return (fh ,0))

cohandle
fwrite_of_stats (s”s)
finally
_ 0@ (fh,c) —
let fh' = fopen_of_io "stats.txt” in

fwrite_of_io fh' c; fclose_of_io fh';
fclose_of_io fh

where

Stats = (* W= fhandle * natx)
{ co_fwrite s @ (fh,c) —» ...,
co_reset _ @ (fh,c) — return ((),(fh,0)) }

Tracking the external world usage (10 <— Stats)

let f (s:string) = (x in 10 x)
using
Stats @ (let fh = fopen_of_io "foo.txt” in
return (fh ,0))

cohandle
fwrite_of_stats (s”s)
finally
_ 0@ (fh,c) —
let fh' = fopen_of_io "stats.txt” in

fwrite_of_io fh' c; fclose_of_io fh';
fclose_of_io fh

where

Stats = (*+ W= fhandle % natx)
{ co_fwrite s @ (fh,c) —» ...,
co_reset _ @ (fh,c) — return ((),(fh,0)) }

e Can also track results of nondet./prob. choices, etc

The external world can also be pure (Pure <— Str)

The external world can also be pure (Pure <— Str)

let f (s:string) = (x in Pure x)
using
Str @ (return "default value")
cohandle
let s = read_of_str () in
if (s = "foo")
then (...; write_of_str "bar"; ...)
else (...)
finally
x @ s — return x
where
Str = (x W= stringx)
{ co_.read _ @ s — return (s,s)

co_write s @ _ — return ((),s) }

So what’s happening more formally?

So what’s happening more formally?

e Core calculus for cohandlers (wo/ handlers = wait a few slides)

So what’s happening more formally?
e Core calculus for cohandlers (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB

So what’s happening more formally?

e Core calculus for cohandlers (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB
e Signatures of (external) worlds

w = {op;:AL~B, ..., 0p,: Ay~ B, }

So what’s happening more formally?
e Core calculus for cohandlers (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB

Signatures of (external) worlds

w = {op;:AL~B, ..., 0p,: Ay~ B, }

Computation terms (value terms are unsurprising)

= returnv | let x=c incg | vwv
| opv (comodel op.)
| using C Q@ ¢ cohandle c finally x @ w — ¢ (cohandling)

So what’s happening more formally?
e Core calculus for cohandlers (wo/ handlers = wait a few slides)

e Types
ABW :=b|1|AxB|0|A+B|ASB

Signatures of (external) worlds

w = {op;:AL~B, ..., 0p,: Ay~ B, }

Computation terms (value terms are unsurprising)

c == returnv | letx=c¢ing | v
| opv (comodel op.)
| using C Q@ ¢ cohandle c finally x @ w — ¢ (cohandling)
e Comodels (cohandlers)

C :={opx@0w—¢, ..., 0p,x0Q@w—c¢,}

So what’s happening more formally?

So what’s happening more formally?
e Typing judgements

lNv:A [Fc: A

So what’s happening more formally?
e Typing judgements

lNv:A [Fc: A

e The two central typing rules are

I ¥ D comodel of w’ with carrier Wp #c¢: Wph
FEc: A x:Aw:WpFc: B

[using D @ ¢; cohandle c finally x @ w — ¢ : B

and

op: Agp ~ Bop € w [Ev:Agp
F=opv: By,

Denotational semantics

Denotational semantics

e Term interpretation looks very similar to alg. effects:
[F=v:A]: [l — [A] [FTEc:Al: [— T.[A]

e un-cohandled operations wait for a suitable external world!

Denotational semantics

e Term interpretation looks very similar to alg. effects:
[F=v:A]: [l — [A] [FTEc:Al: [— T.[A]

e un-cohandled operations wait for a suitable external world!

e The interesting part is the interpretation of cohandling

I D comodel of w’ with carrier Wp M c: Wp
FrEc: A Mx:Aw:WpFc:B
[using D @ ¢; cohandle c finally x @ w — ¢ : B

which is based on M&S's linear state-passing translation, i.e.,

[D] € Comod.,, (Kleisli(T.,))
cohandle withypy : T [A] — ([[WD]] — T, ([A] x [[WD]]))

Operational semantics

Operational semantics

e Idea is to consider configurations ((C,w), ¢)

Operational semantics
e Idea is to consider configurations ((C, Wi , C)

e For example, consider the big-step evaluation of using D ...

Operational semantics
e |dea is to consider configurations (m , C)

e For example, consider the big-step evaluation of using D ...
(((Cowo). (C'owg)) - &) 1 ((Cowa). (Cow])) . veturn wg’)
(((Cow). (€ wf). (D)) +) b ((Cowa). (C.wg). (D, w{")) . return v)
(((Cwa) (€ wh)) erlv/owf' /]) L (((Cows), (Cwh)) , return v/)

(((c, wo), (C',w})) , using D @ ¢; cohandle ¢ finally x @ w — ¢)

l
((«(c, W33,(C’, wj)) , return v/)

Operational semantics
e |dea is to consider configurations (m , C)

e For example, consider the big-step evaluation of using D ...
(((Cowo). (C'owg)) - &) 1 ((Cowa). (Cow])) . veturn wg’)
(((Cow). (€ wf). (D)) +) b ((Cowa). (C.wg). (D, w{")) . return v)
(((Cwa) (€ wh)) erlv/owf' /]) L (((Cows), (Cwh)) , return v/)

(((c, wo), (C',w})) , using D @ ¢; cohandle ¢ finally x @ w — ¢)

l
((«(c, W33,(C’, wj)) , return v/)

e The interpretation of operations uses the co-operations of Cs

But what about alg. effects and handlers?

But what about alg. effects and handlers?

e First: combining this with standard alg. effects and handlers

But what about alg. effects and handlers?

e First: combining this with standard alg. effects and handlers
e In the following

using C @ c_i
cohandle c
finally x @ w— c_f

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in c,

but they must not be allowed to escape cohandle

to escape, have to use the co-operations of the external world

But what about alg. effects and handlers?

e First: combining this with standard alg. effects and handlers

e In the following

using C @ c_i
cohandle c
finally x @ w— c_f

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in c,

but they must not be allowed to escape cohandle
e to escape, have to use the co-operations of the external world

e the continuations of handlers in ¢ are delimited by cohandle

But what about alg. effects and handlers?

e First: combining this with standard alg. effects and handlers

e In the following

using C @ c_i
cohandle c
finally x @ w— c_f

it is natural to want that

e algebraic operations (in the sense of EFF) are allowed in c,

but they must not be allowed to escape cohandle
e to escape, have to use the co-operations of the external world

e the continuations of handlers in ¢ are delimited by cohandle

e Where do multi-handlers fit? Co-operating handlers-cohandlers?

But what about alg. effects and handlers?

But what about alg. effects and handlers?

e Second: What if the outer comodel beaks its promise?

e E.g., 10 lost connection to the HDD where “foo.txt” was

But what about alg. effects and handlers?

e Second: What if the outer comodel beaks its promise?

e E.g., 10 lost connection to the HDD where “foo.txt” was

o ldea:
e Use algebraic effects to communicate downwards

e (Algebraic ops. only allowed to appear in co-operations)

e finally acts as a handler for broken promises

But what about alg. effects and handlers?

e Second: What if the outer comodel beaks its promise?

e E.g., 10 lost connection to the HDD where “foo.txt” was

o ldea:
e Use algebraic effects to communicate downwards

e (Algebraic ops. only allowed to appear in co-operations)

e finally acts as a handler for broken promises

using (x 10 <= Fh x)
Fh @ c_i

cohandle
fwrite_of_d s; (% co_fwrite_of_io throws e x)
fread ()

finally
| x @ w— c_f
| throw e — c_.do_some_cleanup
| op x k— ...

Conclusions

Conclusions
e Comodels as a gateway for interacting with the external world
e System.|O, KOKA's initially & finally , PYTHON's with, ...

e Could also be convenient for general FFI

f:A— B € OCAML
f:Ax Wocam — B X Wocam € OCaml

Conclusions
e Comodels as a gateway for interacting with the external world
e System.|O, KOKA's initially & finally , PYTHON's with, ...

e Could also be convenient for general FFI

f:A— B € OCAML
f:Ax Wocam — B X Wocam € OCaml

Some ongoing work
e Interaction with algebraic effects and (multi-)handlers
e Clarify the connection with (effectful) lenses

e Combinatorics of comodels and their lens-like relationships

