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Computational effects in FP

• Using monads (as in Haskell)

type St a = S t r i n g → ( a , S t r i n g )

f : : St a → St ( a , a )
f c = c >>= (\ x → c >>= (\ y → return ( x , y ) ) )

• Using alg. effects and handlers (as in Eff, Frank, Koka)

e f f e c t Get : i n t
e f f e c t Put : i n t → u n i t

(∗ : i n t → a∗ i n t !{} ∗)
l e t g ( c : u n i t → a !{Get , Put }) =

with s t h handle ( perform ( Put 42) ; c ( ) )

• Both are good for faking comp. effects in a pure language!

But what about effects that need access to the external world?
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External world in FP
• Declare a signature of monads or algebraic effects, e.g.,

(∗ System . IO ∗)

type IO a
o p e n F i l e : : F i l e P a t h → IOMode → IO Handle

(∗ p e r v a s i v e s . e f f ∗)

e f f e c t RandomInt : i n t → i n t
e f f e c t RandomFloat : f l o a t → f l o a t

• And then treat them specially in the compiler, e.g.,

(∗ s r c / r u n t i m e / e v a l . ml ∗)

l e t r e c t o p h a n d l e op =
match op with
| . . .
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This talk — a principled (co)algebraic approach!



Another issue — linearity or lack thereof

• l e t f ( s : s t r i n g ) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h ( s ˆ s ) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h
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l e t h = handler
| e f f e c t ( FWrite f h s k ) → return ( )

l e t g ’ s =
with h handle f ( )
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Another issue — linearity or lack thereof

• l e t f ( s : s t r i n g ) =
l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h ( s ˆ s ) ;
f c l o s e f h ;
return f h

l e t g s =
l e t f h = f s i n f r e a d f h (∗ f h not open ! ∗)

• Even worse when we wrap f in a handler?

l e t h = handler
| e f f e c t ( FWrite f h s k ) → return ( )

l e t g ’ s =
with h handle f ( ) (∗ d a n g l i n g f h ! ∗)



So, how could we solve these issues?

• We could try using existing PL techniques, e.g.,

• Modules and abstraction, e.g., System.IO

type IO a

h C l o s e : : Handle → IO ( )

• Linear (and non-linear) types and effects

l i n e a r type f h a n d l e

e f f e c t FClose : ( l i n e a r f h a n d l e ) → u n i t

l i n e a r e f f e c t FClose : f h a n d l e → u n i t

• Handlers with finally clauses

• Problem: They don’t really capture the essence of the problem
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So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide



So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide



So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide



So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)

• With the System.IO module abstraction ensuring that

• We cannot get our hands on RealWorld (no get and put)

• We have the impression of RealWorld used linearly

• We don’t ask more from RealWorld than it can provide



So, what is that essence then?

• Let’s look at Haskell’s IO monad again

• A common explanation is to think of functions

a→ IO b

as
a→ (RealWorld→ (b,RealWorld))

which is the same as

(a,RealWorld)→ (b,RealWorld)
• With the System.IO module abstraction ensuring that

• We can’t get our hands on RealWorld — it’s not material

• The RealWorld is affected linearly

• We don’t ask more from RealWorld than it can provide

But wait a minute! RealWorld looks a lot like a comodel!

hGetLine : (Handle,RealWorld)→ (String,RealWorld)

hClose : (Handle,RealWorld)→ ((),RealWorld)

Important: co-operations (hClose) make a promise to return!



Refresher: what’s comodel?

• A signature Σ is a set of operation symbols op : Aop  Bop

• A model/algebra/handler M of Σ is given by

M = 〈 M : Set , {opM : Aop ×MBop −→ M}op∈Σ 〉

• A comodel/coalgebra/cohandler W of Σ is given by

W = 〈 W : Set , {opW : Aop ×W −→ Bop ×W }op∈Σ 〉

• Intutively, comodels describe evolution of the world W

• Operational semantics using a tensor of a model and a comodel
(Plotkin & Power, Abou-Saleh & Pattinson)

• Stateful runners of effectful programs (Uustalu)

• Linear state-passing translation (Møgelberg and Staton)

• Top-level behaviour of alg. effects in Eff v2 (Bauer & Pretnar)
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Towards a general programming abstraction

• l e t f ( s : s t r i n g ) =
using IO cohandle

l e t f h = f op en ” f o o . t x t ” i n
f w r i t e f h ( s ˆ s ) ;
f c l o s e f h (∗ i n IO ∗)

Now external world explicit, but dangling fh etc still possible
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Better, but have to explicitly open and thread through fh

• Solution: Modular treatment of external worlds
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Modular treatment of external worlds

• For example

Pure IO77

ww

gg

''

(ext. world)

Fh IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

•
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• For example

Pure
@@

��

IO77

ww

OO

��

gg

''

(ext. world)

Fh
OO

��

IO + CallStatistics . . . (inner world)

Str (inner2 world)

• Fh — “world which consists of exactly one fh ”

• IO −→ Fh — “call fopen with foo. txt , store returned fh ”

• Fh −→ IO — “call fclose with stored fh ”

• Str — “world that is blissfully unaware of fh ”

• Observation: IO←→ Fh and other ←→ look a lot like lenses



Comodels as a gateway to the external world

l e t f ( s : s t r i n g ) =
using

Fh @ ( f o p e n o f i o ” f o o . t x t ”)
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f w r i t e o f f h ( s ˆ s )
f i n a l l y

x @ f h → f c l o s e o f i o f h
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Comodels as a gateway to the external world

l e t f ( s : s t r i n g ) = (∗ i n IO ∗)
using

Fh @ ( f o p e n o f i o ” f o o . t x t ”) (∗ i n IO ∗)
cohandle

f w r i t e o f f h ( s ˆ s ) (∗ i n Fh ∗)
f i n a l l y

x @ f h → f c l o s e o f i o f h (∗ i n IO ∗)

where

Fh = (∗ W = f h a n d l e ∗)
{ c o f r e a d @ f h → . . . ,

c o f w r i t e s @ f h → f w r i t e o f i o s f h ;
return ( ( ) , f h ) }

(∗ c o f r e a d : ( u n i t ∗ W) → ( s t r i n g ∗ W) ∗)
(∗ c o f w r i t e : ( s t r i n g ∗ W) → ( u n i t ∗ W) ∗)
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Modular treatment of worlds (IO←→ Fh←→ Str)

l e t f ( s : s t r i n g ) = (∗ i n IO ∗)
using Fh @ ( f o p e n o f i o ” f o o . t x t ”)
cohandle

us ing S t r @ ( f r e a d o f f h ( ) ) (∗ i n Fh ∗)
cohandle

w r i t e o f s t r ( s ˆ s ) (∗ i n S t r ∗)
f i n a l l y

@ s → f w r i t e o f f h s

f i n a l l y
@ f h → f c l o s e o f i o f h

where

S t r = { c o w r i t e s @ s ’ → (∗ W = s t r i n g ∗)
return ( ( ) , s ’ ˆ s ) }
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Tracking the external world usage (IO←→ Stats)

l e t f ( s : s t r i n g ) = (∗ i n IO ∗)
using

S t a t s @ ( l e t f h = f o p e n o f i o ” f o o . t x t ” i n
return ( fh , 0 ) )

cohandle
f w r i t e o f s t a t s ( s ˆ s )

f i n a l l y
@ ( fh , c ) →

l e t fh ’ = f o p e n o f i o ” s t a t s . t x t ” i n
f w r i t e o f i o fh ’ c ; f c l o s e o f i o fh ’ ;
f c l o s e o f i o f h

where

S t a t s = (∗ W = f h a n d l e ∗ nat ∗)
{ c o f w r i t e s @ ( fh , c ) → . . . ,

c o r e s e t @ ( fh , c ) → return ( ( ) , ( fh , 0 ) ) }

• Can also track results of nondet./prob. choices, etc
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The external world can also be pure (Pure←→ Str)

l e t f ( s : s t r i n g ) = (∗ i n Pure ∗)
using

S t r @ ( return ” d e f a u l t v a l u e ”)
cohandle

. . .
l e t s = r e a d o f s t r ( ) i n
i f ( s == ” f o o ”)
then ( . . . ; w r i t e o f s t r ” bar ” ; . . . )
e l s e ( . . . )
. . .

f i n a l l y
x @ s → return x

where

S t r = (∗ W = s t r i n g ∗)
{ c o r e a d @ s → return ( s , s ) ,

c o w r i t e s @ → return ( ( ) , s ) }
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So what’s happening more formally?
• Core calculus for cohandlers (wo/ handlers ⇒ wait a few slides)

• Types

A,B ,W ::= b | 1 | A× B | 0 | A + B | A ω−→ B

• Signatures of (external) worlds

ω ::= { op1 : A1  B1 , . . . , opn : An  Bn }

• Computation terms (value terms are unsurprising)

c ::= return v | let x = c1 in c2 | v1v2

| ôp v (comodel op.)
| using C @ ci cohandle c finally x @ w → cf (cohandling)

• Comodels (cohandlers)

C ::= { op1 x @ w → c1 , . . . , opn x @ w → cn }
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So what’s happening more formally?

• Typing judgements

Γ ` v : A Γ `ω c : A

• The two central typing rules are

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

and

op : Aop  Bop ∈ ω Γ ` v : Aop

Γ `ω ôp v : Bop
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Denotational semantics

• Term interpretation looks very similar to alg. effects:

JΓ ` v : AK : JΓK −→ JAK JΓ `ω c : AK : JΓK −→ Tω JAK

• un-cohandled operations wait for a suitable external world!

• The interesting part is the interpretation of cohandling

Γ `ω D comodel of ω′ with carrier WD Γ `ω ci : WD

Γ `ω
′
c : A Γ, x :A,w :WD `ω cf : B

Γ `ω using D @ ci cohandle c finally x @ w → cf : B

which is based on M&S’s linear state-passing translation, i.e.,

JDK ∈ Comodω′(Kleisli(Tω))

cohandle withJDK : Tω′ JAK −→
(
JWDK→ Tω (JAK× JWDK)

)
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Operational semantics

• Idea is to consider configurations
( −−−→

(C,w) , c
)

• For example, consider the big-step evaluation of using D ...

(
(
−−−−→
(C,w0), (C′,w ′

0)) , ci
) w� ( (

−−−−→
(C,w1), (C′,w ′

1)) , return w ′′
0

)
(

(
−−−−→
(C,w1), (C′,w ′

1), (D,w ′′
0 )) , c

) w� ( (
−−−−→
(C,w2), (C′,w ′

2), (D,w ′′
1 )) , return v

)
(

(
−−−−→
(C,w2), (C′,w ′

2)) , cf [v/x ,w ′′
1 /w ]

) w� ( (
−−−−→
(C,w3), (C′,w ′

3)) , return v ′ )
(

(
−−−−→
(C,w0), (C′,w ′

0)) , using D @ ci cohandle c finally x @ w → cf
)w�(

(
−−−−→
(C,w3), (C′,w ′

3)) , return v ′ )
• The interpretation of operations uses the co-operations of Cs
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But what about alg. effects and handlers?

• First: combining this with standard alg. effects and handlers

• In the following

using C @ c i
cohandle c
f i n a l l y x @ w → c f

it is natural to want that

• algebraic operations (in the sense of Eff) are allowed in c ,

but they must not be allowed to escape cohandle

• to escape, have to use the co-operations of the external world

• the continuations of handlers in c are delimited by cohandle

• Where do multi-handlers fit? Co-operating handlers-cohandlers?
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But what about alg. effects and handlers?

• Second: What if the outer comodel beaks its promise?

• E.g., IO lost connection to the HDD where “foo.txt” was

• Idea:
• Use algebraic effects to communicate downwards

• (Algebraic ops. only allowed to appear in co-operations)

• finally acts as a handler for broken promises

us ing (∗ IO ←→ Fh ∗)
Fh @ c i

cohandle
f w r i t e o f d s ; (∗ c o f w r i t e o f i o throws e ∗)
f r e a d ( )

f i n a l l y
| x @ w → c f
| throw e → c d o s o m e c l e a n u p
| op x k → . . .
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Conclusions

• Comodels as a gateway for interacting with the external world

• System.IO , Koka’s initially & finally , Python’s with , . . .

• Could also be convenient for general FFI

f : A −→ B ∈ OCaml

f : A×WOCaml −→ B ×WOCaml ∈ OCaml

Some ongoing work

• Interaction with algebraic effects and (multi-)handlers

• Clarify the connection with (effectful) lenses

• Combinatorics of comodels and their lens-like relationships
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