
When programs have to watch paint dry

Danel Ahman

Faculty of Mathematics and Physics

University of Ljubljana

Theory Seminar @ TTÜ, 17.11.2022

Resources are important in programming!

‚ Much of existing work has focussed on how resources are used

‚ linear types to avoid discarding and dupl. (of file handles)

A,B ::“ . . . | Ab B | A(B | . . .

‚ separation logics for framing and anti-aliasing of memory

tPu C tQu

tP ˚ Ru C tQ ˚ Ru
Frame

‚ session types, coeffect systems, runners of (alg.) effs., . . .

‚ We instead focus on when resources are used

‚ values might become usable only after some time

‚ want to avoid unnecessary blocking and idle waiting

‚ but also start work as soon as resources become available

Resources are important in programming!

‚ Much of existing work has focussed on how resources are used

‚ linear types to avoid discarding and dupl. (of file handles)

A,B ::“ . . . | Ab B | A(B | . . .

‚ separation logics for framing and anti-aliasing of memory

tPu C tQu

tP ˚ Ru C tQ ˚ Ru
Frame

‚ session types, coeffect systems, runners of (alg.) effs., . . .

‚ We instead focus on when resources are used

‚ values might become usable only after some time

‚ want to avoid unnecessary blocking and idle waiting

‚ but also start work as soon as resources become available

Resources are important in programming!

‚ Much of existing work has focussed on how resources are used

‚ linear types to avoid discarding and dupl. (of file handles)

A,B ::“ . . . | Ab B | A(B | . . .

‚ separation logics for framing and anti-aliasing of memory

tPu C tQu

tP ˚ Ru C tQ ˚ Ru
Frame

‚ session types, coeffect systems, runners of (alg.) effs., . . .

‚ We instead focus on when resources are used

‚ values might become usable only after some time

‚ want to avoid unnecessary blocking and idle waiting

‚ but also start work as soon as resources become available

Temporal resources are also important!

‚ Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door')

‚ Correctness relies on the parts given enough time to dry

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls

‚ But how to reason about the result being temporally correct?

‚ we focus on the kinds of code emitted by (b), or written

directly when full control and predictability is important

‚ we develop type-based means for reasoning about its correctness

Temporal resources are also important!

‚ Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door')

‚ Correctness relies on the parts given enough time to dry

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls

‚ But how to reason about the result being temporally correct?

‚ we focus on the kinds of code emitted by (b), or written

directly when full control and predictability is important

‚ we develop type-based means for reasoning about its correctness

Temporal resources are also important!

‚ Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door')

‚ Correctness relies on the parts given enough time to dry

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls

‚ But how to reason about the result being temporally correct?

‚ we focus on the kinds of code emitted by (b), or written

directly when full control and predictability is important

‚ we develop type-based means for reasoning about its correctness

Temporal resources are also important!

‚ Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door')

‚ Correctness relies on the parts given enough time to dry

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls

‚ But how to reason about the result being temporally correct?

‚ we focus on the kinds of code emitted by (b), or written

directly when full control and predictability is important

‚ we develop type-based means for reasoning about its correctness

Temporal resources are also important!

‚ Not just about assembling (car) parts:

‚ interrupt-handling (in low-level embedded IoT code)

‚ handler code should run in predictable time

‚ should account for fetching any necessary resources

‚ make use of as many of the limited MCU cycles as possible

‚ (the receiving end of op. calls and interrupts from sensors)

‚ asynchronous programming (via async/await, futures, . . .)

‚ want time guarantees about when async. comps. come back

‚ to know when it is safe to synchronise (for minimal blocking)

‚ ...

Today’s plan

‚ Temporal resources via time-graded modal types

‚ enforcing temporal correctness for the robot arms example

‚ A core calculus for safe programming with temporal resources

‚ Fitch-style time-graded modal types (for temporal resources)

‚ temporally aware graded algebraic effects (for time passage)

‚ temporally aware effect handlers (for user-defined effects)

‚ A sound denotational semantics justifying the proposed design

‚ adjoint strong monoidal functors (for modalities)

‚ r´s-strong time-graded monad (for effectful computations)

‚ a presheaf example (for concreteness and intuition)

‚

Today’s plan

‚ Temporal resources via time-graded modal types

‚ enforcing temporal correctness for the robot arms example

‚ A core calculus for safe programming with temporal resources

‚ Fitch-style time-graded modal types (for temporal resources)

‚ temporally aware graded algebraic effects (for time passage)

‚ temporally aware effect handlers (for user-defined effects)

‚ A sound denotational semantics justifying the proposed design

‚ adjoint strong monoidal functors (for modalities)

‚ r´s-strong time-graded monad (for effectful computations)

‚ a presheaf example (for concreteness and intuition)

‚ Draft paper: https://arxiv.org/abs/2210.07738

https://arxiv.org/abs/2210.07738

Today’s plan

‚ Temporal resources via time-graded modal types

‚ enforcing temporal correctness for the robot arms example

‚ A core calculus for safe programming with temporal resources

‚ Fitch-style time-graded modal types (for temporal resources)

‚ temporally aware graded algebraic effects (for time passage)

‚ temporally aware effect handlers (for user-defined effects)

‚ A sound denotational semantics justifying the proposed design

‚ adjoint strong monoidal functors (for modalities)

‚ r´s-strong time-graded monad (for effectful computations)

‚ a presheaf example (for concreteness and intuition)

‚ Agda form.: https://github.com/danelahman/temporal-resources

https://github.com/danelahman/temporal-resources

Temporal resources via time-graded modal types

General desiderata

‚ Recall the production line example

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door')

‚ In general, we want a flexible framework in which

‚ time delay between paint and assemble

‚ could be given by blocking execution with delay, but

‚ equally well could be given by doing other useful work, and

‚ want it to be as much as needed and as little as possible

‚ pbody1, left-door1, right-door1q can have separate drying times

‚ executing operations (e.g., delay) should make time pass

‚ ops. should be redefinable, while preserving temporal correctness

General desiderata

‚ Recall the production line example

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

Ð τdry time needs to pass
assemble (body', left-door', right-door')

‚ In general, we want a flexible framework in which

‚ time delay between paint and assemble

‚ could be given by blocking execution with delay, but

‚ equally well could be given by doing other useful work, and

‚ want it to be as much as needed and as little as possible

‚ pbody1, left-door1, right-door1q can have separate drying times

‚ executing operations (e.g., delay) should make time pass

‚ ops. should be redefinable, while preserving temporal correctness

A naive solution attempt

‚ What if we stay in a simply typed effectful language and

additionally make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry;

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No,

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where it is supposed to happen, e.g., do not want

assemble (body', left-door', right-door');
delay τdry Ð total time of program still τdry ` τassemble

A naive solution attempt

‚ What if we stay in a simply typed effectful language and

additionally make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry; Ð τdry time now passes

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No,

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where it is supposed to happen, e.g., do not want

assemble (body', left-door', right-door');
delay τdry Ð total time of program still τdry ` τassemble

A naive solution attempt

‚ What if we stay in a simply typed effectful language and

additionally make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry; Ð τdry time now passes

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No,

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where it is supposed to happen, e.g., do not want

assemble (body', left-door', right-door');
delay τdry Ð total time of program still τdry ` τassemble

A naive solution attempt

‚ What if we stay in a simply typed effectful language and

additionally make paint return the desired drying time?

let (τdry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay τdry; Ð τdry time now passes

assemble (body', left-door', right-door')

‚ So, are we done?

‚ No,

‚ all the burden for correctness is on the programmer’s shoulders

‚ typechecker saying yes does not guarantee that delay happens, or

that it happens where it is supposed to happen, e.g., do not want

assemble (body', left-door', right-door');
delay τdry Ð total time of program still τdry ` τassemble

Our solution: temporal resource types

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX

e.g., allowing us to work with resource values/vars. such as

body1 : rτdrysBody left-door1 : rτdrysDoor ...

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

Our solution: temporal resource types

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX

e.g., allowing us to work with resource values/vars. such as

body1 : rτdrysBody left-door1 : rτdrysDoor ...

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

Our solution: temporal resource types

‚ We use a time-graded modal type to capture temporal resources

X ,Y ,Z ::“ . . . | rτ sX

e.g., allowing us to work with resource values/vars. such as

body1 : rτdrysBody left-door1 : rτdrysDoor ...

‚ Intuition 1: rτ sX denotes that an X -typed resource becomes

usable in at most τ time units (and remains so afterwards)

‚ Intuition 2: at least τ time units need to pass before a

program is allowed to access the underlying X -typed resource

Our solution: temporal resource type
‚ Presented as time-graded variant of Fitch-style modal types

‚ Contexts are extended with context modalities

Γ ::“ ¨ | Γ, x :X | Γ, x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temp. resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for contexts Γ with τ ď time Γ and rens. between them.

Our solution: temporal resource type
‚ Presented as time-graded variant of Fitch-style modal types

‚ Contexts are extended with context modalities

Γ ::“ ¨ | Γ, x :X | Γ, x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temp. resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for contexts Γ with τ ď time Γ and rens. between them.

Our solution: temporal resource type
‚ Presented as time-graded variant of Fitch-style modal types

‚ Contexts are extended with context modalities

Γ ::“ ¨ | Γ, x :X | Γ, x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temp. resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for contexts Γ with τ ď time Γ and rens. between them.

Our solution: temporal resource type
‚ Presented as time-graded variant of Fitch-style modal types

‚ Contexts are extended with context modalities

Γ ::“ ¨ | Γ, x :X | Γ, x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temp. resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for contexts Γ with τ ď time Γ and rens. between them.

Our solution: temporal resource type
‚ Presented as time-graded variant of Fitch-style modal types

‚ Contexts are extended with context modalities

Γ ::“ ¨ | Γ, x :X | Γ, x τ y

‚ Introduction form is given by boxing up a temp. resource

Γ, x τ y $ V : X

Γ $ boxτ V : r τ sX

‚ Elimination rule is given by unboxing a temp. resource

τ ď time Γ | Γ |τ $ V : r τ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

where | Γ |τ takes Γ to a τ time units earlier state1, e.g., as in

| Γ, x :X , x 4 y, y :Y , x 1 y, z :Z |3 ” Γ, x :X , x 2 y

1We have | ´ |τ % x τ y for contexts Γ with τ ď time Γ and rens. between them.

Our solution: how we make time pass

‚ We propose temporally aware graded algebraic effects, e.g.,

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÝÑ
rτdryi sPart ! τpaint

giving rise to operation calls with temporal awareness

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where the cont. M can assume that τpaint additional time has

passed before it starts executing (compared to paint V py .Mq)

‚ This “temporal action” also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Our solution: how we make time pass

‚ We propose temporally aware graded algebraic effects, e.g.,

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÝÑ
rτdryi sPart ! τpaint

giving rise to operation calls with temporal awareness

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where the cont. M can assume that τpaint additional time has

passed before it starts executing (compared to paint V py .Mq)

‚ This “temporal action” also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Our solution: how we make time pass

‚ We propose temporally aware graded algebraic effects, e.g.,

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÝÑ
rτdryi sPart ! τpaint

giving rise to operation calls with temporal awareness

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where the cont. M can assume that τpaint additional time has

passed before it starts executing (compared to paint V py .Mq)

‚ This “temporal action” also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Our solution: how we make time pass

‚ We propose temporally aware graded algebraic effects, e.g.,

paint :
ÝÝÑ
Part

ÝÝÝÝÝÝÝÑ
rτdryi sPart ! τpaint

giving rise to operation calls with temporal awareness

Γ $ V : Body ˆ Door ˆ Door

Γ , x τpaint y , y : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V py .Mq : X ! τpaint ` τ

where the cont. M can assume that τpaint additional time has

passed before it starts executing (compared to paint V py .Mq)

‚ This “temporal action” also happens in seq. composition

Γ $ M : X ! τ Γ , x τ y , x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Our solution: back to controlling robot arm

‚ Using the above, we can now rewrite our example as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y
unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

This looks remarkably similar to the naive attempt from earlier!

‚ Alternatively, instead of blocking execution with

delay τdry;

we could have equally well called enough other useful operations

op1; op2; ...; opn; Ð as long as they collectively take ě τdry time

Our solution: back to controlling robot arm

‚ Using the above, we can now rewrite our example as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y
unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

This looks remarkably similar to the naive attempt from earlier!

‚ Alternatively, instead of blocking execution with

delay τdry;

we could have equally well called enough other useful operations

op1; op2; ...; opn; Ð as long as they collectively take ě τdry time

Our solution: back to controlling robot arm

‚ Using the above, we can now rewrite our example as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y
unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

This looks remarkably similar to the naive attempt from earlier!

‚ Alternatively, instead of blocking execution with

delay τdry;

we could have equally well called enough other useful operations

op1; op2; ...; opn; Ð as long as they collectively take ě τdry time

Our solution: back to controlling robot arm

‚ Using the above, we can now rewrite our example as

let (body', left-door', right-door') = Ð resource-typed variables
paint (body, left-door, right-door) in

delay τdry; Ð forces τdry time to pass

unbox body' as body'' in Ð context: Γ , body1 : rτdrysBody , ... , x τdry y
unbox left-door' as left-door'' in
unbox right-door' as right-door'' in

assemble (body'', left-door'', right-door'') Ð non-resource-typed variables

This looks remarkably similar to the naive attempt from earlier!

‚ Alternatively, instead of blocking execution with

delay τdry;

we could have equally well called enough other useful operations

op1; op2; ...; opn; Ð as long as they collectively take ě τdry time

Making it formal: core calculus λrτ s

Core calculus: types

‚ Based on Levy et al’s fine-grain call-by-value (FGCBV) calculus

‚ Ground types (for base types b P B, and where τ P N)

A,B ::“ b | 1 | Aˆ B | rτ sA

‚ Operation signatures (for operations op P O)

op : Aop Bop ! τop

‚ Value types (extend ground types)

X ,Y ,Z ::“ A | X ˆ Y | X Ñ Y ! τ | rτ sX

‚ Computation types

X ! τ

Core calculus: terms

‚ Terms are split into values and computations

‚ Values

V ,W ::“ x | fpV1, . . . ,Vnq | pq | . . . | boxτ V

‚ Computations

M,N ::“ return V

| let x “ M in N

| . . .

| op V py .Mq Ð user-redefinable via handling

| delay τ M Ð primitive, not user-definable

| handle M with px .k .MopqopPO to y in N

| unboxτ V as x in N

Core calculus: type system

‚ Well-typed values and computations typed using judgements

Γ $ V : X Γ $ M : X ! τ

‚ For example, typing rules for variables2 and returning values

Γ, x :X , Γ1 $ x : X

Γ $ V : X

Γ $ return V : X ! 0

and for effect handling

Γ $ M : X ! τ Γ , x τ y , y :X $ N : Y ! τ 1
´

@τ2 . Γ , x :Aop , k : rτops
`

Bop Ñ Y ! τ2
˘

$ Mop : Y ! τop ` τ
2
¯

opPO

Γ $ handle M with
`

x .k .Mop

˘

opPO to y in N : Y ! τ ` τ 1

‚ Note: No sub-effecting! Non-trivial due to x τ y. Future work.

2No restriction on Γ1 compared to Clouston’s Fitch-style modal lambda-calculi

Core calculus: type system

‚ Well-typed values and computations typed using judgements

Γ $ V : X Γ $ M : X ! τ

‚ For example, typing rules for variables2 and returning values

Γ, x :X , Γ1 $ x : X

Γ $ V : X

Γ $ return V : X ! 0

and for effect handling

Γ $ M : X ! τ Γ , x τ y , y :X $ N : Y ! τ 1
´

@τ2 . Γ , x :Aop , k : rτops
`

Bop Ñ Y ! τ2
˘

$ Mop : Y ! τop ` τ
2
¯

opPO

Γ $ handle M with
`

x .k .Mop

˘

opPO to y in N : Y ! τ ` τ 1

‚ Note: No sub-effecting! Non-trivial due to x τ y. Future work.

2No restriction on Γ1 compared to Clouston’s Fitch-style modal lambda-calculi

Core calculus: admissible typing rules

‚ Standard structural rules (weakening, contraction, exchange)

‚ Strong monoidal functor (with co-strength) laws for x´ y

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

‚ for 2nd rule it is useful that unbox uses | Γ |τ and not Γ1, Γ2

‚ 4th rule shows that all types are monotone with respect to time

‚ Proof sketch (for the above two groups of rules):

(a) inductively define renaming relation ρ : Γ Γ1

(b) prove that if Γ $ J and ρ : Γ Γ1, then Γ1 $ Jrρs

‚ Substitution rules
Γ, x :X , Γ1 $ J Γ $ V : X

Γ, Γ1 $ JrV {xs

Core calculus: admissible typing rules

‚ Standard structural rules (weakening, contraction, exchange)

‚ Strong monoidal functor (with co-strength) laws for x´ y

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

‚ for 2nd rule it is useful that unbox uses | Γ |τ and not Γ1, Γ2

‚ 4th rule shows that all types are monotone with respect to time

‚ Proof sketch (for the above two groups of rules):

(a) inductively define renaming relation ρ : Γ Γ1

(b) prove that if Γ $ J and ρ : Γ Γ1, then Γ1 $ Jrρs

‚ Substitution rules
Γ, x :X , Γ1 $ J Γ $ V : X

Γ, Γ1 $ JrV {xs

Core calculus: admissible typing rules

‚ Standard structural rules (weakening, contraction, exchange)

‚ Strong monoidal functor (with co-strength) laws for x´ y

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

‚ for 2nd rule it is useful that unbox uses | Γ |τ and not Γ1, Γ2

‚ 4th rule shows that all types are monotone with respect to time

‚ Proof sketch (for the above two groups of rules):

(a) inductively define renaming relation ρ : Γ Γ1

(b) prove that if Γ $ J and ρ : Γ Γ1, then Γ1 $ Jrρs

‚ Substitution rules
Γ, x :X , Γ1 $ J Γ $ V : X

Γ, Γ1 $ JrV {xs

Core calculus: admissible typing rules

‚ Standard structural rules (weakening, contraction, exchange)

‚ Strong monoidal functor (with co-strength) laws for x´ y

Γ, x 0 y $ J

Γ $ J

Γ, x τ1 ` τ2 y $ J

Γ, x τ1 y, x τ2 y $ J

Γ, x τ y $ J τ ď τ 1

Γ, x τ 1 y $ J

Γ, x τ y, x :X $ J

Γ, x :X , x τ y $ J

‚ for 2nd rule it is useful that unbox uses | Γ |τ and not Γ1, Γ2

‚ 4th rule shows that all types are monotone with respect to time

‚ Proof sketch (for the above two groups of rules):

(a) inductively define renaming relation ρ : Γ Γ1

(b) prove that if Γ $ J and ρ : Γ Γ1, then Γ1 $ Jrρs

‚ Substitution rules
Γ, x :X , Γ1 $ J Γ $ V : X

Γ, Γ1 $ JrV {xs

Core calculus: equational theory

‚ Given by equations between well-typed values and computations

Γ $ V ” W : X Γ $ M ” N : X ! τ

‚ Standard β-/η-equations of FGCBV-based calculi, e.g.,

Γ $ plet x “ return V in Nq ” NrV {xs : Y ! τ

‚ Algebraicity equations for algebraic operations

‚ Homomorphism equations for effect handling

‚ β-/η-equations for temporal resources

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1

Γ $ unboxτ W as x in Nrboxτ x{y s ” NrW {y s : Y ! τ 1

‚ Optional extension: 0- and `-equations for delay ops.

Core calculus: equational theory

‚ Given by equations between well-typed values and computations

Γ $ V ” W : X Γ $ M ” N : X ! τ

‚ Standard β-/η-equations of FGCBV-based calculi, e.g.,

Γ $ plet x “ return V in Nq ” NrV {xs : Y ! τ

‚ Algebraicity equations for algebraic operations

‚ Homomorphism equations for effect handling

‚ β-/η-equations for temporal resources

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1

Γ $ unboxτ W as x in Nrboxτ x{y s ” NrW {y s : Y ! τ 1

‚ Optional extension: 0- and `-equations for delay ops.

Core calculus: equational theory

‚ Given by equations between well-typed values and computations

Γ $ V ” W : X Γ $ M ” N : X ! τ

‚ Standard β-/η-equations of FGCBV-based calculi, e.g.,

Γ $ plet x “ return V in Nq ” NrV {xs : Y ! τ

‚ Algebraicity equations for algebraic operations

‚ Homomorphism equations for effect handling

‚ β-/η-equations for temporal resources

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1

Γ $ unboxτ W as x in Nrboxτ x{y s ” NrW {y s : Y ! τ 1

‚ Optional extension: 0- and `-equations for delay ops.

Core calculus: equational theory

‚ Given by equations between well-typed values and computations

Γ $ V ” W : X Γ $ M ” N : X ! τ

‚ Standard β-/η-equations of FGCBV-based calculi, e.g.,

Γ $ plet x “ return V in Nq ” NrV {xs : Y ! τ

‚ Algebraicity equations for algebraic operations

‚ Homomorphism equations for effect handling

‚ β-/η-equations for temporal resources

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1

Γ $ unboxτ W as x in Nrboxτ x{y s ” NrW {y s : Y ! τ 1

‚ Optional extension: 0- and `-equations for delay ops.

Core calculus: equational theory

‚ Given by equations between well-typed values and computations

Γ $ V ” W : X Γ $ M ” N : X ! τ

‚ Standard β-/η-equations of FGCBV-based calculi, e.g.,

Γ $ plet x “ return V in Nq ” NrV {xs : Y ! τ

‚ Algebraicity equations for algebraic operations

‚ Homomorphism equations for effect handling

‚ β-/η-equations for temporal resources

Γ $ unboxτ pboxτ V q as x in N ” NrV {xs : Y ! τ 1

Γ $ unboxτ W as x in Nrboxτ x{y s ” NrW {y s : Y ! τ 1

‚ Optional extension: 0- and `-equations for delay ops.

Making it formal: denotational semantics

Denotational semantics: big picture

‚ Given suitable category C and suitable structure (e.g., T) on it

‚ Given objects rrbss P C for all base types b P B

‚ We interpret types X as objects rrX ss P C

‚ We interpret contexts Γ as objects rrΓss P C

‚ We interpret well-typed values Γ $ V : X as morphisms

rrΓ $ V : X ss : rrΓss ÝÑ rrX ss

‚ We interpret well-typed computations Γ $ M : X ! τ as

rrΓ $ M : X ! τ ss : rrΓss ÝÑ T τ rrX ss

‚ Such that: If Γ $ I ” J , then rrΓ $ I ss ” rrΓ $ Jss (soundness)

Denotational semantics: category C
‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for completeness, would need to restrict to Kleisli exponentials

‚ Example: presheaf category SetpN,ďq

‚ objects are covariant functors A : pN,ďq ÝÑ Set

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone: given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q

‚ and when unfolding std. defs., exponentials are given as

pAñBqptq
def
“

´

ft1 : Apt 1q ÝÑ Bpt 1q
¯

t1Ptt1PN | tďt1u

where all ft1 are also asked to be natural in t 1

Denotational semantics: category C
‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for completeness, would need to restrict to Kleisli exponentials

‚ Example: presheaf category SetpN,ďq

‚ objects are covariant functors A : pN,ďq ÝÑ Set

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone: given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q

‚ and when unfolding std. defs., exponentials are given as

pAñBqptq
def
“

´

ft1 : Apt 1q ÝÑ Bpt 1q
¯

t1Ptt1PN | tďt1u

where all ft1 are also asked to be natural in t 1

Denotational semantics: category C
‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for completeness, would need to restrict to Kleisli exponentials

‚ Example: presheaf category SetpN,ďq

‚ objects are covariant functors A : pN,ďq ÝÑ Set

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone: given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q

‚ and when unfolding std. defs., exponentials are given as

pAñBqptq
def
“

´

ft1 : Apt 1q ÝÑ Bpt 1q
¯

t1Ptt1PN | tďt1u

where all ft1 are also asked to be natural in t 1

Denotational semantics: category C
‚ Want C to have binary products p1,Aˆ Bq

‚ Want C to have exponentials AñB

‚ for completeness, would need to restrict to Kleisli exponentials

‚ Example: presheaf category SetpN,ďq

‚ objects are covariant functors A : pN,ďq ÝÑ Set

‚ gives Kripke’s possible worlds style semantics

‚ but with all types being monotone: given A P SetpN,ďq, then

t1 ď t2 implies Apt1 ď t2q : Apt1q ÝÑ Apt2q

‚ and when unfolding std. defs., exponentials are given as

pAñBqptq
def
“

´

ft1 : Apt 1q ÝÑ Bpt 1q
¯

t1Ptt1PN | tďt1u

where all ft1 are also asked to be natural in t 1

Denotational semantics: (modal) types

‚ Want there to be strong monoidal functor (for temp. res. type)

r´s : pN,ďq ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.3

εA : r0sA
–
ÝÑ A δA,τ1,τ2 : rτ1 ` τ2sA

–
ÝÑ rτ1s prτ2sAq

‚ We then interpret types by straightforward struct. recursion, e.g.,

rrrτ sX ss
def
“ rτ s rrX ss

‚ In the presheaf example, we define r´s on objects as

prτ sAqptq
def
“ Apt ` τq

3In Fitch-style, the S4 modality ˝ is interpreted by an idempotent comonad

Denotational semantics: (modal) types

‚ Want there to be strong monoidal functor (for temp. res. type)

r´s : pN,ďq ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.3

εA : r0sA
–
ÝÑ A δA,τ1,τ2 : rτ1 ` τ2sA

–
ÝÑ rτ1s prτ2sAq

‚ We then interpret types by straightforward struct. recursion, e.g.,

rrrτ sX ss
def
“ rτ s rrX ss

‚ In the presheaf example, we define r´s on objects as

prτ sAqptq
def
“ Apt ` τq

3In Fitch-style, the S4 modality ˝ is interpreted by an idempotent comonad

Denotational semantics: (modal) types

‚ Want there to be strong monoidal functor (for temp. res. type)

r´s : pN,ďq ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.3

εA : r0sA
–
ÝÑ A δA,τ1,τ2 : rτ1 ` τ2sA

–
ÝÑ rτ1s prτ2sAq

‚ We then interpret types by straightforward struct. recursion, e.g.,

rrrτ sX ss
def
“ rτ s rrX ss

‚ In the presheaf example, we define r´s on objects as

prτ sAqptq
def
“ Apt ` τq

3In Fitch-style, the S4 modality ˝ is interpreted by an idempotent comonad

Denotational semantics: (modal) contexts

‚ Want there to be strong monoidal functor (for ctx. modalities)

x´ y : pN,ďqop
ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.4

ηA : A
–
ÝÑ x 0 yA µA,τ1,τ2 : x τ1 y px τ2 yAq

–
ÝÑ x τ1 ` τ2 yA

‚ We then interpret contexts as rrΓss
def
“ rrΓsse 1, where

rrΓsse : C ÝÑ C rrΓ, x τ ysse A
def
“ x τ y prrΓsse Aq

as we then conveniently have isos like rrΓ1, Γ2ss – rrΓ2ss
e prrΓ1ssq

‚ In the presheaf example, we define x´ y on objects as

px τ yAqptq
def
“ pτ ď tq ˆ Apt 9́ τq

4In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad

Denotational semantics: (modal) contexts

‚ Want there to be strong monoidal functor (for ctx. modalities)

x´ y : pN,ďqop
ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.4

ηA : A
–
ÝÑ x 0 yA µA,τ1,τ2 : x τ1 y px τ2 yAq

–
ÝÑ x τ1 ` τ2 yA

‚ We then interpret contexts as rrΓss
def
“ rrΓsse 1, where

rrΓsse : C ÝÑ C rrΓ, x τ ysse A
def
“ x τ y prrΓsse Aq

as we then conveniently have isos like rrΓ1, Γ2ss – rrΓ2ss
e prrΓ1ssq

‚ In the presheaf example, we define x´ y on objects as

px τ yAqptq
def
“ pτ ď tq ˆ Apt 9́ τq

4In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad

Denotational semantics: (modal) contexts

‚ Want there to be strong monoidal functor (for ctx. modalities)

x´ y : pN,ďqop
ÝÑ rC,Cs

with the strong monoidality witnessed by the natural isos.4

ηA : A
–
ÝÑ x 0 yA µA,τ1,τ2 : x τ1 y px τ2 yAq

–
ÝÑ x τ1 ` τ2 yA

‚ We then interpret contexts as rrΓss
def
“ rrΓsse 1, where

rrΓsse : C ÝÑ C rrΓ, x τ ysse A
def
“ x τ y prrΓsse Aq

as we then conveniently have isos like rrΓ1, Γ2ss – rrΓ2ss
e prrΓ1ssq

‚ In the presheaf example, we define x´ y on objects as

px τ yAqptq
def
“ pτ ď tq ˆ Apt 9́ τq

4In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad

Denotational semantics: mod. interaction

‚ Want there to be a family of adjunctions5

x τ y % rτ s

witnessed by natural transformations

η%A,τ : A ÝÑ rτ s px τ yAq ε%A,τ : x τ y prτ sAq ÝÑ A

‚ satisfying the standard triangle laws, and

‚ interacting well with the strong monoidal structures

‚ In the presheaf example,

‚ η%A,τ and ε%A,τ are given by id. on A-values, plus by ď-reasoning

‚ ε%A,τ is definable because of the pτ ď tq condition in px τ yAqptq

5In Fitch-style modal λ-calculi, one also requires an adjunction between mods.

Denotational semantics: mod. interaction

‚ Want there to be a family of adjunctions5

x τ y % rτ s

witnessed by natural transformations

η%A,τ : A ÝÑ rτ s px τ yAq ε%A,τ : x τ y prτ sAq ÝÑ A

‚ satisfying the standard triangle laws, and

‚ interacting well with the strong monoidal structures

‚ In the presheaf example,

‚ η%A,τ and ε%A,τ are given by id. on A-values, plus by ď-reasoning

‚ ε%A,τ is definable because of the pτ ď tq condition in px τ yAqptq

5In Fitch-style modal λ-calculi, one also requires an adjunction between mods.

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc. graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying appropriate laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2 : T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sAˆ T τ B ÝÑ T τ pAˆ Bq

‚ The latter is equivalent to r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ Also require T to have alg. ops. and support for eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc. graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying appropriate laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2 : T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sAˆ T τ B ÝÑ T τ pAˆ Bq

‚ The latter is equivalent to r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ Also require T to have alg. ops. and support for eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc. graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying appropriate laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2 : T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sAˆ T τ B ÝÑ T τ pAˆ Bq

‚ The latter is equivalent to r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ Also require T to have alg. ops. and support for eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ Want there to be a graded monad (disc. graded as no sub-eff.)

T : N ÝÑ rC,Cs

with unit and multiplication (satisfying appropriate laws)

ηTA : A ÝÑ T 0A µTA,τ1,τ2 : T τ1 pT τ2 Aq ÝÑ T pτ1 ` τ2qA

and with a r´s-strength6 (satisfying variants of std. str. laws)

strTA,B,τ : rτ sAˆ T τ B ÝÑ T τ pAˆ Bq

‚ The latter is equivalent to r´s-variant of enrichment of T, i.e.,

rτ s pA ñ Bq ÝÑ pT τ A ñ T τ Bq

‚ Also require T to have alg. ops. and support for eff. handling

6Terminology follows the parlance of Bierman and de Paiva (♦ was ˝-strong)

Denotational semantics: comp. effects

‚ In the presheaf example, the graded monad7 is given by cases

a P Aptq

ret a P pT 0Aqptq

a P rrAopssptq k P
`

rτops prrBopss ñ T τ Aq
˘

ptq

op a k P pT pτop ` τqAqptq

k P rτ s pT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq

with the graded-monadic structure given by unsurprising recursion

‚ Direct def. in our Agda formalisation uses induction-recursion

‚ IR needed so that k is natural for continuations in effect handling

7This T is for the setting where there are no delay-equations in the calculus

Denotational semantics: comp. effects

‚ In the presheaf example, the graded monad7 is given by cases

a P Aptq

ret a P pT 0Aqptq

a P rrAopssptq k P
`

rτops prrBopss ñ T τ Aq
˘

ptq

op a k P pT pτop ` τqAqptq

k P rτ s pT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq

with the graded-monadic structure given by unsurprising recursion

‚ Direct def. in our Agda formalisation uses induction-recursion

‚ IR needed so that k is natural for continuations in effect handling

7This T is for the setting where there are no delay-equations in the calculus

Denotational semantics: (value) terms

‚ The interpretation of terms is unsurprising

‚ follows usual patterns of interpreting FGCBV terms

‚ just need to carefully manage the x´ y and r´s modalities

‚ For example, variables are interpreted as (product) projections

rrΓ, x :X , Γ1 $ x : X ss
def
“

rrΓ, x :X , Γ1ss
–

Ý́Ñ rrΓ1sse prrΓss ˆ rrX ssq
e
Ý́Ñ

x time Γ1 y prrΓss ˆ rrX ssq
εxy

Ý́Ñ rrΓss ˆ rrX ss
snd
Ý́Ñ rrX ss

and boxing is interpreted using the unit of x τ y % rτ s

rrΓ $ boxτ V : rτ sX ss
def
“ rrΓss

η%

Ý́Ñ rτ s px τ y rrΓssq
rτ s prrV ssq
´́ ´́ÝÑ rτ s rrX ss

Denotational semantics: (value) terms

‚ The interpretation of terms is unsurprising

‚ follows usual patterns of interpreting FGCBV terms

‚ just need to carefully manage the x´ y and r´s modalities

‚ For example, variables are interpreted as (product) projections

rrΓ, x :X , Γ1 $ x : X ss
def
“

rrΓ, x :X , Γ1ss
–

Ý́Ñ rrΓ1sse prrΓss ˆ rrX ssq
e
Ý́Ñ

x time Γ1 y prrΓss ˆ rrX ssq
εxy

Ý́Ñ rrΓss ˆ rrX ss
snd
Ý́Ñ rrX ss

and boxing is interpreted using the unit of x τ y % rτ s

rrΓ $ boxτ V : rτ sX ss
def
“ rrΓss

η%

Ý́Ñ rτ s px τ y rrΓssq
rτ s prrV ssq
´́ ´́ÝÑ rτ s rrX ss

Denotational semantics: (value) terms

‚ The interpretation of terms is unsurprising

‚ follows usual patterns of interpreting FGCBV terms

‚ just need to carefully manage the x´ y and r´s modalities

‚ For example, variables are interpreted as (product) projections

rrΓ, x :X , Γ1 $ x : X ss
def
“

rrΓ, x :X , Γ1ss
–

Ý́Ñ rrΓ1sse prrΓss ˆ rrX ssq
e
Ý́Ñ

x time Γ1 y prrΓss ˆ rrX ssq
εxy

Ý́Ñ rrΓss ˆ rrX ss
snd
Ý́Ñ rrX ss

and boxing is interpreted using the unit of x τ y % rτ s

rrΓ $ boxτ V : rτ sX ss
def
“ rrΓss

η%

Ý́Ñ rτ s px τ y rrΓssq
rτ s prrV ssq
´́ ´́ÝÑ rτ s rrX ss

Denotational semantics: comp. terms

‚ Seq. comp. is interpreted using η% and strT-followed-by-µT

rrΓ $ let x “ M in N : Y ! τ ` τ 1ss
def
“

rrΓss
x η% , rrMss y
´́ ´́ ´́ÝÑ rτ s px τ y rrΓssq ˆ T τ rrX ss

strT

Ý́Ñ

T τ px τ y rrΓss ˆ rrX ssq
T τ prrNssq
´́ ´́ Ý́Ñ

T τ pT τ 1 rrY ssq
µT

Ý́Ñ T pτ ` τ 1q rrY ss

and unboxing is interpreted using | ´ |τ % x τ y and x τ y % rτ s

rrΓ $ unboxτ V as x in N : Y ! τ 1ss
def
“

rrΓss
x id , e1 y

´́ ´́ÝÑ rrΓss ˆ x τ y prr| Γ |τ ssq
idˆx τ y prrV ssq
´́ ´́ ´́ ´́ Ý́Ñ

rrΓss ˆ x τ y prτ s rrX ssq
idˆ ε%

´́ Ý́Ñ rrΓss ˆ rrX ss
rrNss
Ý́Ñ T τ 1 rrY ss

Denotational semantics: comp. terms

‚ Seq. comp. is interpreted using η% and strT-followed-by-µT

rrΓ $ let x “ M in N : Y ! τ ` τ 1ss
def
“

rrΓss
x η% , rrMss y
´́ ´́ ´́ÝÑ rτ s px τ y rrΓssq ˆ T τ rrX ss

strT

Ý́Ñ

T τ px τ y rrΓss ˆ rrX ssq
T τ prrNssq
´́ ´́ Ý́Ñ

T τ pT τ 1 rrY ssq
µT

Ý́Ñ T pτ ` τ 1q rrY ss

and unboxing is interpreted using | ´ |τ % x τ y and x τ y % rτ s

rrΓ $ unboxτ V as x in N : Y ! τ 1ss
def
“

rrΓss
x id , e1 y

´́ ´́ÝÑ rrΓss ˆ x τ y prr| Γ |τ ssq
idˆx τ y prrV ssq
´́ ´́ ´́ ´́ Ý́Ñ

rrΓss ˆ x τ y prτ s rrX ssq
idˆ ε%

´́ Ý́Ñ rrΓss ˆ rrX ss
rrNss
Ý́Ñ T τ 1 rrY ss

Denotational semantics: soundness

‚ The soundness theorem

Γ $ I ” J implies rrΓ $ I ss ” rrΓ $ Jss

is proved

‚ by unsurprising induction on given derivations

‚ by using the categorical structure we required above

‚ by proving semantic renaming and substitution lemmas

‚ by relating syntactic renamings with semantic morphisms

‚ The completeness theorem

rrΓ $ I ss ” rrΓ $ Jss in all models implies Γ $ I ” J

is left for future work (e.g., when sub-eff. question is resolved)

Denotational semantics: soundness

‚ The soundness theorem

Γ $ I ” J implies rrΓ $ I ss ” rrΓ $ Jss

is proved

‚ by unsurprising induction on given derivations

‚ by using the categorical structure we required above

‚ by proving semantic renaming and substitution lemmas

‚ by relating syntactic renamings with semantic morphisms

‚ The completeness theorem

rrΓ $ I ss ” rrΓ $ Jss in all models implies Γ $ I ” J

is left for future work (e.g., when sub-eff. question is resolved)

Conclusion

Conclusion

‚ Temporal resources can be naturally captured using

‚ modal temporal resource types rτ sX

‚ context modalities Γ, x τ y

‚ with a time-graded variant of Fitch-style presentation

‚ with a temporally aware type-and-effect system

‚ with a natural category-theoretic semantics

‚ Draft paper: When programs have to watch paint dry

https://arxiv.org/abs/2210.07738

‚ (Work in progress) Agda formalisation

https://github.com/danelahman/temporal-resources

https://arxiv.org/abs/2210.07738
https://github.com/danelahman/temporal-resources

Some ongoing/future work directions

‚ Sub-effecting

‚ as sub-effecting M = all-possible-ways-to-insert-delays-into-M?

‚ (Primitive) recursion

‚ grade of rec V Mz x .k .Ms computed by iteration/recursion

‚ Mz and Ms being temporally aware depending on iteration no.

‚ leads to needing type dependency (on V s being recursed on)

‚ Generalising gradings

‚ other pN, 0,`, 9́ ,ďq-like structures, e.g., (sets of) traces or states

‚ different structures, e.g., as Γ, x τptraceq y, x :X $ N : Y ! trace1

‚ maybe more generally as Γ, x τpΓ, traceq y, x :X $ N : Y ! trace1

‚ Expiring resources

‚ where resources are usable only for an interval, e.g., as r τ, τ 1 sX

