When programs have to watch paint dry

Danel Ahman

Faculty of Mathematics and Physics
University of Ljubljana

Theory Seminar @ TTÜ, 17.11.2022

Resources are important in programming!

Resources are important in programming!

- Much of existing work has focussed on how resources are used
- linear types to avoid discarding and dupl. (of file handles)

$$
A, B::=\ldots|A \otimes B| A \multimap B \mid \ldots
$$

- separation logics for framing and anti-aliasing of memory

$$
\frac{\{P\} \subset\{Q\}}{\{P * R\} C\{Q * R\}} \quad \text { Frame }
$$

- session types, coeffect systems, runners of (alg.) effs., ...

Resources are important in programming!

- Much of existing work has focussed on how resources are used
- linear types to avoid discarding and dupl. (of file handles)

$$
A, B::=\ldots|A \otimes B| A \multimap B \mid \ldots
$$

- separation logics for framing and anti-aliasing of memory

$$
\frac{\{P\} \subset\{Q\}}{\{P * R\} C\{Q * R\}} \quad \text { Frame }
$$

- session types, coeffect systems, runners of (alg.) effs., ...
- We instead focus on when resources are used
- values might become usable only after some time
- want to avoid unnecessary blocking and idle waiting
- but also start work as soon as resources become available

Temporal resources are also important!

- Consider controlling robot arms on a production line:
let (body', left-door', right-door') = paint (body, left-door, right-door) in
assemble (body', left-door', right-door')

Temporal resources are also important!

- Consider controlling robot arms on a production line:

$$
\begin{aligned}
& \text { let (body', left-door', right-door') }= \\
& \text { paint (body, left-door, right-door) in } \\
& \text { assemble (body', left-door', right-door') }
\end{aligned}
$$

$$
\leftarrow \tau_{\text {dry }} \text { time needs to pass }
$$

- Correctness relies on the parts given enough time to dry

Temporal resources are also important!

- Consider controlling robot arms on a production line:

$$
\begin{aligned}
& \text { let (body', left-door', right-door') }= \\
& \text { paint (body, left-door, right-door) in } \\
& \text { assemble (body', left-door', right-door') }
\end{aligned}
$$

$$
\leftarrow \tau_{\text {dry }} \text { time needs to pass }
$$

- Correctness relies on the parts given enough time to dry
(a) a scheduler could dynamically block execution, or
(b) a compiler could insert enough time delay between op. calls

Temporal resources are also important!

- Consider controlling robot arms on a production line:

$$
\begin{aligned}
& \text { let (body', left-door', right-door') }= \\
& \text { paint (body, left-door, right-door) in } \\
& \text { assemble (body', left-door', right-door') }
\end{aligned}
$$

$\leftarrow \tau_{\text {dry }}$ time needs to pass

- Correctness relies on the parts given enough time to dry
(a) a scheduler could dynamically block execution, or
(b) a compiler could insert enough time delay between op. calls
- But how to reason about the result being temporally correct?
- we focus on the kinds of code emitted by (b), or written directly when full control and predictability is important
- we develop type-based means for reasoning about its correctness

Temporal resources are also important!

- Not just about assembling (car) parts:
- interrupt-handling (in low-level embedded loT code)
- handler code should run in predictable time
- should account for fetching any necessary resources
- make use of as many of the limited MCU cycles as possible
- (the receiving end of op. calls and interrupts from sensors)
- asynchronous programming (via async/await, futures, ...)
- want time guarantees about when async. comps. come back
- to know when it is safe to synchronise (for minimal blocking)

Today's plan

- Temporal resources via time-graded modal types
- enforcing temporal correctness for the robot arms example
- A core calculus for safe programming with temporal resources
- Fitch-style time-graded modal types (for temporal resources)
- temporally aware graded algebraic effects (for time passage)
- temporally aware effect handlers (for user-defined effects)
- A sound denotational semantics justifying the proposed design
- adjoint strong monoidal functors (for modalities)
- [-]-strong time-graded monad (for effectful computations)
- a presheaf example (for concreteness and intuition)

Today's plan

- Temporal resources via time-graded modal types
- enforcing temporal correctness for the robot arms example
- A core calculus for safe programming with temporal resources
- Fitch-style time-graded modal types (for temporal resources)
- temporally aware graded algebraic effects (for time passage)
- temporally aware effect handlers (for user-defined effects)
- A sound denotational semantics justifying the proposed design
- adjoint strong monoidal functors (for modalities)
- [-]-strong time-graded monad (for effectful computations)
- a presheaf example (for concreteness and intuition)
- Draft paper: https://arxiv.org/abs/2210.07738

Today's plan

- Temporal resources via time-graded modal types
- enforcing temporal correctness for the robot arms example
- A core calculus for safe programming with temporal resources
- Fitch-style time-graded modal types (for temporal resources)
- temporally aware graded algebraic effects (for time passage)
- temporally aware effect handlers (for user-defined effects)
- A sound denotational semantics justifying the proposed design
- adjoint strong monoidal functors (for modalities)
- [-]-strong time-graded monad (for effectful computations)
- a presheaf example (for concreteness and intuition)
- Agda form.: https://github.com/danelahman/temporal-resources

Temporal resources via time-graded modal types

General desiderata

- Recall the production line example
let $\left(\right.$ body' $^{\prime}$ left-door', right-door') $=$ paint (body, left-door, right-door) in

$\leftarrow \tau_{\text {dry }}$ time needs to pass

assemble (body', left-door', right-door')

General desiderata

- Recall the production line example
let (body', left-door', right-door') $=$ paint (body, left-door, right-door) in
$\leftarrow \tau_{\text {dry }}$ time needs to pass
assemble (body', left-door', right-door')
- In general, we want a flexible framework in which
- time delay between paint and assemble
- could be given by blocking execution with delay, but
- equally well could be given by doing other useful work, and
- want it to be as much as needed and as little as possible
- (body', left-door', right-door') can have separate drying times
- executing operations (e.g., delay) should make time pass
- ops. should be redefinable, while preserving temporal correctness

A naive solution attempt

- What if we stay in a simply typed effectful language and additionally make paint return the desired drying time?
let $\left(\tau_{\text {dry }}\right.$, body', left-door', right-door' $)=$ paint (body, left-door, right-door) in
delay τ_{dry};
assemble (body', left-door', right-door')

A naive solution attempt

- What if we stay in a simply typed effectful language and additionally make paint return the desired drying time?
let $\left(\tau_{\text {dry }}\right.$, body', left-door', right-door' $)=$ paint (body, left-door, right-door) in
delay τ_{dry};
$\leftarrow \tau_{\text {dry }}$ time now passes
assemble (body', left-door', right-door')
- So, are we done?

A naive solution attempt

- What if we stay in a simply typed effectful language and additionally make paint return the desired drying time?
let $\left(\tau_{\text {dry }}\right.$, body', left-door', right-door' $)=$ paint (body, left-door, right-door) in
delay τ_{dry};
$\leftarrow \tau_{\text {dry }}$ time now passes
assemble (body', left-door', right-door')
- So, are we done?
- No,
- all the burden for correctness is on the programmer's shoulders
- typechecker saying yes does not guarantee that delay happens, or that it happens where it is supposed to happen

A naive solution attempt

- What if we stay in a simply typed effectful language and additionally make paint return the desired drying time?
let $\left(\tau_{\text {dry }}\right.$, body', left-door', right-door' $)=$ paint (body, left-door, right-door) in
delay τ_{dry};
$\leftarrow \tau_{\text {dry }}$ time now passes
assemble (body', left-door', right-door')
- So, are we done?
- No,
- all the burden for correctness is on the programmer's shoulders
- typechecker saying yes does not guarantee that delay happens, or that it happens where it is supposed to happen, e.g., do not want assemble (body', left-door', right-door'); delay $\tau_{\text {dry }} \quad \leftarrow$ total time of program still $\tau_{\text {dry }}+\tau_{\text {assemble }}$

Our solution: temporal resource types

Our solution: temporal resource types

- We use a time-graded modal type to capture temporal resources

$$
X, Y, Z \quad:=\ldots \mid[\tau] X
$$

e.g., allowing us to work with resource values/vars. such as

$$
\text { body }^{\prime}:\left[\tau_{\mathrm{dry}}\right] \text { Body } \quad \text { left-door }{ }^{\prime}:\left[\tau_{\mathrm{dry}}\right] \text { Door }
$$

Our solution: temporal resource types

- We use a time-graded modal type to capture temporal resources

$$
X, Y, Z \quad:=\ldots \mid[\tau] X
$$

e.g., allowing us to work with resource values/vars. such as

$$
\text { body }^{\prime}:\left[\tau_{\text {dry }}\right] \text { Body left-door }{ }^{\prime}:\left[\tau_{\text {dry }}\right] \text { Door } \ldots
$$

- Intuition 1: $[\tau] X$ denotes that an X-typed resource becomes usable in at most τ time units (and remains so afterwards)
- Intuition 2: at least τ time units need to pass before a program is allowed to access the underlying X-typed resource

Our solution: temporal resource type

- Presented as time-graded variant of Fitch-style modal types

Our solution: temporal resource type

- Presented as time-graded variant of Fitch-style modal types
- Contexts are extended with context modalities

$$
\Gamma::=\cdot|\Gamma, x: X| \Gamma,\langle\tau\rangle
$$

Our solution: temporal resource type

- Presented as time-graded variant of Fitch-style modal types
- Contexts are extended with context modalities

$$
\Gamma::=\cdot|\Gamma, x: X|\ulcorner,\langle\tau\rangle
$$

- Introduction form is given by boxing up a temp. resource

$$
\frac{\Gamma,\langle\tau\rangle \vdash V: X}{\Gamma \vdash \operatorname{box}_{\tau} V:[\tau] X}
$$

Our solution: temporal resource type

- Presented as time-graded variant of Fitch-style modal types
- Contexts are extended with context modalities

$$
\ulcorner::=\cdot|\Gamma, x: X|\ulcorner,\langle\tau\rangle
$$

- Introduction form is given by boxing up a temp. resource

$$
\frac{\Gamma,\langle\tau\rangle \vdash V: X}{\Gamma \vdash \operatorname{box}_{\tau} V:[\tau] X}
$$

- Elimination rule is given by unboxing a temp. resource

$$
\frac{\tau \leqslant \operatorname{time} \Gamma \quad|\Gamma|_{\tau} \vdash V:[\tau] X \quad \Gamma, x: X \vdash N: Y!\tau^{\prime}}{\Gamma \vdash \operatorname{unbox}_{\tau} V \text { as } x \text { in } N: Y!\tau^{\prime}}
$$

Our solution: temporal resource type

- Presented as time-graded variant of Fitch-style modal types
- Contexts are extended with context modalities

$$
\ulcorner::=\cdot|\Gamma, x: X|\ulcorner,\langle\tau\rangle
$$

- Introduction form is given by boxing up a temp. resource

$$
\frac{\Gamma,\langle\tau\rangle \vdash V: X}{\Gamma \vdash \operatorname{box}_{\tau} V:[\tau] X}
$$

- Elimination rule is given by unboxing a temp. resource

$$
\frac{\tau \leqslant \text { time } \Gamma \quad|\Gamma|_{\tau} \vdash V:[\tau] X \quad \Gamma, x: X \vdash N: Y!\tau^{\prime}}{\Gamma \vdash \operatorname{unbox}_{\tau} V \text { as } x \text { in } N: Y!\tau^{\prime}}
$$

where $|\Gamma|_{\tau}$ takes Γ to a τ time units earlier state ${ }^{1}$, e.g., as in

$$
|\Gamma, x: X,\langle 4\rangle, y: Y,\langle 1\rangle, z: Z|_{3} \equiv \Gamma, x: X,\langle 2\rangle
$$

Our solution: how we make time pass

Our solution: how we make time pass

- We propose temporally aware graded algebraic effects, e.g.,

$$
\text { paint } \left.: \overrightarrow{\text { Part }} \rightsquigarrow \overrightarrow{\left[\tau_{\text {dry }}^{i}\right.}\right] \text { Part }!\tau_{\text {paint }}
$$

Our solution: how we make time pass

- We propose temporally aware graded algebraic effects, e.g.,

$$
\text { paint }: \overrightarrow{\text { Part }} \rightsquigarrow \overrightarrow{\left[\tau_{\mathrm{dry}_{i}}\right] \text { Part }!\tau_{\text {paint }}}
$$

giving rise to operation calls with temporal awareness

$$
\begin{gathered}
\Gamma \vdash V: \text { Body } \times \text { Door } \times \text { Door } \\
\Gamma,\left\langle\tau_{\text {paint }}\right\rangle, y:\left[\tau_{\text {dry }}\right] \text { Body } \times\left[\tau_{\text {dry }}\right] \text { Door } \times\left[\tau_{\text {dry }}\right] \text { Door } \vdash M: X!\tau \\
\Gamma \vdash \text { paint } V(y . M): X!\tau_{\text {paint }}+\tau
\end{gathered}
$$

where the cont. M can assume that $\tau_{\text {paint }}$ additional time has passed before it starts executing (compared to paint $V(y, M)$)

Our solution: how we make time pass

- We propose temporally aware graded algebraic effects, e.g.,

$$
\text { paint }: \overrightarrow{\text { Part }} \rightsquigarrow \overrightarrow{\left[\tau_{\text {dry }_{i}}\right] \text { Part }}!\tau_{\text {paint }}
$$

giving rise to operation calls with temporal awareness

$$
\begin{gathered}
\Gamma \vdash V: \text { Body } \times \text { Door } \times \text { Door } \\
\Gamma,\left\langle\tau_{\text {paint }}\right\rangle, y:\left[\tau_{\text {dry }}\right] \text { Body } \times\left[\tau_{\text {dry }}\right] \text { Door } \times\left[\tau_{\text {dry }}\right] \text { Door } \vdash M: X!\tau \\
\Gamma \vdash \text { paint } V(y . M): X!\tau_{\text {paint }}+\tau
\end{gathered}
$$

where the cont. M can assume that $\tau_{\text {paint }}$ additional time has passed before it starts executing (compared to paint $V(y, M)$)

- This "temporal action" also happens in seq. composition

$$
\frac{\Gamma \vdash M: X!\tau \quad \Gamma,\langle\tau\rangle, x: X \vdash N: Y!\tau^{\prime}}{\Gamma \vdash \operatorname{let} x=M \text { in } N: Y!\tau+\tau^{\prime}}
$$

Our solution: back to controlling robot arm

Our solution: back to controlling robot arm

- Using the above, we can now rewrite our example as
let (body', left-door', right-door') =
\leftarrow resource-typed variables paint (body, left-door, right-door) in

delay $\tau_{\text {dry }}$;

\leftarrow forces $\tau_{\text {dry }}$ time to pass
unbox body' as body' ${ }^{\prime \prime}$ in \leftarrow context: 「, body' $:\left[\tau_{\text {dry }}\right]$ Body, ..., $\left\langle\tau_{\text {dry }}\right\rangle$ unbox left-door' as left-door'" in unbox right-door' as right-door' ${ }^{\prime \prime}$ in
assemble (body", left-door' ${ }^{\prime \prime}$, right-door'1) \leftarrow non-resource-typed variables

Our solution: back to controlling robot arm

- Using the above, we can now rewrite our example as
let (body', left-door', right-door') =
\leftarrow resource-typed variables paint (body, left-door, right-door) in
delay $\tau_{\text {dry }}$;
\leftarrow forces $\tau_{\text {dry }}$ time to pass
unbox body' as body" in \leftarrow context: Γ, body' $:\left[\tau_{\text {dry }}\right]$ Body, $\ldots,\left\langle\tau_{\text {dry }}\right\rangle$ unbox left-door' as left-door" in unbox right-door' as right-door" in
assemble (body", left-door'", right-door') \leftarrow non-resource-typed variables
This looks remarkably similar to the naive attempt from earlier!

Our solution: back to controlling robot arm

- Using the above, we can now rewrite our example as
let (body', left-door', right-door') = paint (body, left-door, right-door) in
delay $\tau_{\text {dry }}$;
\leftarrow resource-typed variables
\leftarrow forces $\tau_{\text {dry }}$ time to pass
unbox body' as body" in \leftarrow context: $\left\ulcorner\right.$, body' $:\left[\tau_{\text {dry }}\right]$ Body , ... , $\left\langle\tau_{\text {dry }}\right\rangle$ unbox left-door' as left-door" in unbox right-door' as right-door" in
assemble (body", left-door'", right-door') \leftarrow non-resource-typed variables
This looks remarkably similar to the naive attempt from earlier!
- Alternatively, instead of blocking execution with delay $\tau_{\text {dry }}$; we could have equally well called enough other useful operations $\mathrm{op}_{1} ; \mathrm{op}_{2} ; \ldots ; \mathrm{op}_{\mathrm{n}}$;

Making it formal: core calculus $\lambda_{[\tau]}$

Core calculus: types

- Based on Levy et al's fine-grain call-by-value (FGCBV) calculus
- Ground types (for base types $\mathrm{b} \in \mathcal{B}$, and where $\tau \in \mathbb{N}$)

$$
A, B::=\mathrm{b}|1| A \times B \mid[\tau] A
$$

- Operation signatures (for operations op $\in \mathcal{O}$)

$$
\mathrm{op}: A_{\mathrm{op}} \rightsquigarrow B_{\mathrm{op}}!\tau_{\mathrm{op}}
$$

- Value types (extend ground types)

$$
X, Y, Z::=A|X \times Y| X \rightarrow Y!\tau \mid[\tau] X
$$

- Computation types

$$
X!\tau
$$

Core calculus: terms

- Terms are split into values and computations
- Values

$$
V, W::=x\left|f\left(V_{1}, \ldots, V_{n}\right)\right|()|\ldots| \operatorname{box}_{\tau} V
$$

- Computations

$$
\begin{aligned}
M, N: & =\text { return } V \\
& \mid \text { let } x=M \text { in } N \\
& \mid \ldots \\
\mid & \text { op } V(y . M) \quad \leftarrow \text { user-redefinable via handling } \\
& \mid \text { delay } \tau M \quad \leftarrow \text { primitive, not user-definable } \\
& \left\lvert\,{\text { handle } M \text { with }\left(x . k . M_{\mathrm{op}}\right)_{\mathrm{op} \in \mathcal{O}} \text { to } y \text { in } N} \begin{array}{l}
\text { unbox } \\
\tau
\end{array} V\right. \text { as } x \text { in } N
\end{aligned}
$$

Core calculus: type system

- Well-typed values and computations typed using judgements

$$
\Gamma \vdash V: X \quad \Gamma \vdash M: X!\tau
$$

- For example, typing rules for variables ${ }^{2}$ and returning values

$$
\frac{\Gamma \vdash V: X}{\Gamma, x: X, \Gamma^{\prime} \vdash x: X} \quad \frac{\Gamma \vdash \operatorname{return} V: X!0}{\Gamma}
$$

and for effect handling

$$
\begin{gathered}
\Gamma \vdash M: X!\tau \quad \Gamma,\langle\tau\rangle, y: X \vdash N: Y!\tau^{\prime} \\
\left(\forall \tau^{\prime \prime} \cdot \Gamma, x: A_{\mathrm{op}}, k:\left[\tau_{\mathrm{op}}\right]\left(B_{\mathrm{op}} \rightarrow Y!\tau^{\prime \prime}\right) \vdash M_{\mathrm{op}}: Y!\tau_{\mathrm{op}}+\tau^{\prime \prime}\right)_{\mathrm{op} \in \mathcal{O}}
\end{gathered}
$$

$$
\Gamma \vdash \text { handle } M \text { with }\left(x . k . M_{\mathrm{op}}\right)_{\mathrm{op} \in \mathcal{O}} \text { to } y \text { in } N: Y!\tau+\tau^{\prime}
$$

Core calculus: type system

- Well-typed values and computations typed using judgements

$$
\Gamma \vdash V: X \quad \Gamma \vdash M: X!\tau
$$

- For example, typing rules for variables ${ }^{2}$ and returning values

$$
\frac{\Gamma \vdash V: X}{\Gamma, x: X, \Gamma^{\prime} \vdash x: X} \quad \frac{\Gamma \vdash \operatorname{return} V: X!0}{}
$$

and for effect handling

$$
\begin{gathered}
\Gamma \vdash M: X!\tau \quad \Gamma,\langle\tau\rangle, y: X \vdash N: Y!\tau^{\prime} \\
\left(\forall \tau^{\prime \prime} \cdot \Gamma, x: A_{\mathrm{op}}, k:\left[\tau_{\mathrm{op}}\right]\left(B_{\mathrm{op}} \rightarrow Y!\tau^{\prime \prime}\right) \vdash M_{\mathrm{op}}: Y!\tau_{\mathrm{op}}+\tau^{\prime \prime}\right)_{\mathrm{op} \in \mathcal{O}}
\end{gathered}
$$

$$
\Gamma \vdash \text { handle } M \text { with }\left(x . k . M_{\mathrm{op}}\right)_{\mathrm{op} \in \mathcal{O}} \text { to } y \text { in } N: Y!\tau+\tau^{\prime}
$$

- Note: No sub-effecting! Non-trivial due to $\langle\tau\rangle$. Future work.

Core calculus: admissible typing rules

- Standard structural rules (weakening, contraction, exchange)

Core calculus: admissible typing rules

- Standard structural rules (weakening, contraction, exchange)
- Strong monoidal functor (with co-strength) laws for $\langle-\rangle$

$$
\xlongequal[\Gamma \vdash J]{\Gamma,\langle 0\rangle \vdash J} \xlongequal[\Gamma,\left\langle\tau_{1}\right\rangle,\left\langle\tau_{2}\right\rangle \vdash J]{\Gamma,\left\langle\tau_{1}+\tau_{2}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle \vdash J \quad \tau \leqslant \tau^{\prime}}{\Gamma,\left\langle\tau^{\prime}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle, x: X \vdash J}{\Gamma, x: X,\langle\tau\rangle \vdash J}
$$

- for 2 nd rule it is useful that unbox uses $|\Gamma|_{\tau}$ and not Γ_{1}, Γ_{2}
- 4th rule shows that all types are monotone with respect to time

Core calculus: admissible typing rules

- Standard structural rules (weakening, contraction, exchange)
- Strong monoidal functor (with co-strength) laws for $\langle-\rangle$

$$
\xlongequal[\Gamma \vdash J]{\Gamma,\langle 0\rangle \vdash J} \xlongequal[\Gamma,\left\langle\tau_{1}\right\rangle,\left\langle\tau_{2}\right\rangle \vdash J]{\Gamma,\left\langle\tau_{1}+\tau_{2}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle \vdash J \quad \tau \leqslant \tau^{\prime}}{\Gamma,\left\langle\tau^{\prime}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle, x: X \vdash J}{\Gamma, x: X,\langle\tau\rangle \vdash J}
$$

- for 2 nd rule it is useful that unbox uses $|\Gamma|_{\tau}$ and not Γ_{1}, Γ_{2}
- 4th rule shows that all types are monotone with respect to time
- Proof sketch (for the above two groups of rules):
(a) inductively define renaming relation $\rho: \Gamma \rightsquigarrow \Gamma^{\prime}$
(b) prove that if $\Gamma \vdash J$ and $\rho: \Gamma \rightsquigarrow \Gamma^{\prime}$, then $\Gamma^{\prime} \vdash J[\rho]$

Core calculus: admissible typing rules

- Standard structural rules (weakening, contraction, exchange)
- Strong monoidal functor (with co-strength) laws for $\langle-\rangle$
$\xlongequal[\Gamma \vdash J]{\Gamma,\langle 0\rangle \vdash J} \xlongequal[\Gamma,\left\langle\tau_{1}\right\rangle,\left\langle\tau_{2}\right\rangle \vdash J]{\Gamma,\left\langle\tau_{1}+\tau_{2}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle \vdash J \tau \leqslant \tau^{\prime}}{\Gamma,\left\langle\tau^{\prime}\right\rangle \vdash J} \frac{\Gamma,\langle\tau\rangle, x: X \vdash J}{\Gamma, x: X,\langle\tau\rangle \vdash J}$
- for 2 nd rule it is useful that unbox uses $|\Gamma|_{\tau}$ and not Γ_{1}, Γ_{2}
- 4th rule shows that all types are monotone with respect to time
- Proof sketch (for the above two groups of rules):
(a) inductively define renaming relation $\rho: \Gamma \rightsquigarrow \Gamma^{\prime}$
(b) prove that if $\Gamma \vdash J$ and $\rho: \Gamma \rightsquigarrow \Gamma^{\prime}$, then $\Gamma^{\prime} \vdash J[\rho]$
- Substitution rules

$$
\frac{\Gamma, x: X, \Gamma^{\prime} \vdash J \quad \Gamma \vdash V: X}{\Gamma, \Gamma^{\prime} \vdash J[V / x]}
$$

Core calculus: equational theory

- Given by equations between well-typed values and computations

$$
\Gamma \vdash V \equiv W: X \quad\ulcorner\vdash M \equiv N: X!\tau
$$

Core calculus: equational theory

- Given by equations between well-typed values and computations

$$
\Gamma \vdash V \equiv W: X \quad\ulcorner\vdash M \equiv N: X!\tau
$$

- Standard $\beta-/ \eta$-equations of FGCBV-based calculi, e.g.,

$$
\Gamma \vdash(\text { let } x=\operatorname{return} V \text { in } N) \equiv N[V / x]: Y!\tau
$$

Core calculus: equational theory

- Given by equations between well-typed values and computations

$$
\Gamma \vdash V \equiv W: X \quad\ulcorner\vdash M \equiv N: X!\tau
$$

- Standard $\beta-/ \eta$-equations of FGCBV-based calculi, e.g.,

$$
\Gamma \vdash(\text { let } x=\operatorname{return} V \text { in } N) \equiv N[V / x]: Y!\tau
$$

- Algebraicity equations for algebraic operations
- Homomorphism equations for effect handling

Core calculus: equational theory

- Given by equations between well-typed values and computations

$$
\Gamma \vdash V \equiv W: X \quad\ulcorner\vdash M \equiv N: X!\tau
$$

- Standard $\beta-/ \eta$-equations of FGCBV-based calculi, e.g.,

$$
\Gamma \vdash(\text { let } x=\operatorname{return} V \text { in } N) \equiv N[V / x]: Y!\tau
$$

- Algebraicity equations for algebraic operations
- Homomorphism equations for effect handling
- $\beta-/ \eta$-equations for temporal resources

$$
\begin{gathered}
\Gamma \vdash \operatorname{unbox}_{\tau}\left(\text { box }_{\tau} V\right) \text { as } x \text { in } N \equiv N[V / x]: Y!\tau^{\prime} \\
\Gamma \vdash \operatorname{unbox}_{\tau} W \text { as } x \text { in } N\left[\text { box }_{\tau} x / y\right] \equiv N[W / y]: Y!\tau^{\prime}
\end{gathered}
$$

Core calculus: equational theory

- Given by equations between well-typed values and computations

$$
\ulcorner\vdash V \equiv W: X \quad\ulcorner\vdash M \equiv N: X!\tau
$$

- Standard $\beta-/ \eta$-equations of FGCBV-based calculi, e.g.,

$$
\Gamma \vdash(\text { let } x=\operatorname{return} V \text { in } N) \equiv N[V / x]: Y!\tau
$$

- Algebraicity equations for algebraic operations
- Homomorphism equations for effect handling
- $\beta-/ \eta$-equations for temporal resources

$$
\begin{gathered}
\Gamma \vdash \text { unbox }_{\tau}\left(\text { box }_{\tau} V\right) \text { as } x \text { in } N \equiv N[V / x]: Y!\tau^{\prime} \\
\Gamma \vdash \operatorname{unbox}_{\tau} W \text { as } x \text { in } N\left[\text { box }_{\tau} x / y\right] \equiv N[W / y]: Y!\tau^{\prime}
\end{gathered}
$$

- Optional extension: 0- and +-equations for delay ops.

Making it formal: denotational semantics

Denotational semantics: big picture

- Given suitable category \mathbb{C} and suitable structure (e.g., T) on it
- Given objects $\llbracket b \rrbracket \in \mathbb{C}$ for all base types $b \in \mathcal{B}$
- We interpret types X as objects $\llbracket X \rrbracket \in \mathbb{C}$
- We interpret contexts Γ as objects $\llbracket \Gamma \rrbracket \in \mathbb{C}$
- We interpret well-typed values $\Gamma \vdash V: X$ as morphisms

$$
\llbracket\ulcorner\vdash V: X \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket X \rrbracket
$$

- We interpret well-typed computations $\Gamma \vdash M: X!\tau$ as

$$
\llbracket \Gamma \vdash M: X!\tau \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow T \tau \llbracket X \rrbracket
$$

- Such that: If $\Gamma \vdash I \equiv J$, then $\llbracket \Gamma \vdash I \rrbracket \equiv \llbracket \Gamma \vdash J \rrbracket$ (soundness)

Denotational semantics: category \mathbb{C}

- Want \mathbb{C} to have binary products $(\mathbb{1}, A \times B)$
- Want \mathbb{C} to have exponentials $A \Rightarrow B$
- for completeness, would need to restrict to Kleisli exponentials

Denotational semantics: category \mathbb{C}

- Want \mathbb{C} to have binary products $(\mathbb{1}, A \times B)$
- Want \mathbb{C} to have exponentials $A \Rightarrow B$
- for completeness, would need to restrict to Kleisli exponentials
- Example: presheaf category $\operatorname{Set}^{(\mathbb{N}, \leqslant)}$
- objects are covariant functors $A:(\mathbb{N}, \leqslant) \longrightarrow$ Set
- gives Kripke's possible worlds style semantics

Denotational semantics: category \mathbb{C}

- Want \mathbb{C} to have binary products $(\mathbb{1}, A \times B)$
- Want \mathbb{C} to have exponentials $A \Rightarrow B$
- for completeness, would need to restrict to Kleisli exponentials
- Example: presheaf category $\operatorname{Set}^{(\mathbb{N}, \leqslant)}$
- objects are covariant functors $A:(\mathbb{N}, \leqslant) \longrightarrow$ Set
- gives Kripke's possible worlds style semantics
- but with all types being monotone: given $A \in \operatorname{Set}^{(\mathbb{N}, \leqslant)}$, then

$$
t_{1} \leqslant t_{2} \quad \text { implies } \quad A\left(t_{1} \leqslant t_{2}\right): A\left(t_{1}\right) \longrightarrow A\left(t_{2}\right)
$$

Denotational semantics: category \mathbb{C}

- Want \mathbb{C} to have binary products $(\mathbb{1}, A \times B)$
- Want \mathbb{C} to have exponentials $A \Rightarrow B$
- for completeness, would need to restrict to Kleisli exponentials
- Example: presheaf category $\operatorname{Set}^{(\mathbb{N}, \leqslant)}$
- objects are covariant functors $A:(\mathbb{N}, \leqslant) \longrightarrow$ Set
- gives Kripke's possible worlds style semantics
- but with all types being monotone: given $A \in \operatorname{Set}{ }^{(\mathbb{N}, \leqslant)}$, then

$$
t_{1} \leqslant t_{2} \quad \text { implies } \quad A\left(t_{1} \leqslant t_{2}\right): A\left(t_{1}\right) \longrightarrow A\left(t_{2}\right)
$$

- and when unfolding std. defs., exponentials are given as

$$
(A \Rightarrow B)(t) \quad \stackrel{\text { def }}{=} \quad\left(f_{t^{\prime}}: A\left(t^{\prime}\right) \longrightarrow B\left(t^{\prime}\right)\right)_{t^{\prime} \in\left\{t^{\prime} \in \mathbb{N} \mid t \leqslant t^{\prime}\right\}}
$$

where all $f_{t^{\prime}}$ are also asked to be natural in t^{\prime}

Denotational semantics: (modal) types

- Want there to be strong monoidal functor (for temp. res. type)

$$
[-]:(\mathbb{N}, \leqslant) \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{3}$

$$
\varepsilon_{A}:[0] A \xrightarrow{\cong} A \quad \delta_{A, \tau_{1}, \tau_{2}}:\left[\tau_{1}+\tau_{2}\right] A \xrightarrow{\cong}\left[\tau_{1}\right]\left(\left[\tau_{2}\right] A\right)
$$

Denotational semantics: (modal) types

- Want there to be strong monoidal functor (for temp. res. type)

$$
[-]:(\mathbb{N}, \leqslant) \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{3}$

$$
\varepsilon_{A}:[0] A \xrightarrow{\cong} A \quad \delta_{A, \tau_{1}, \tau_{2}}:\left[\tau_{1}+\tau_{2}\right] A \xrightarrow{\cong}\left[\tau_{1}\right]\left(\left[\tau_{2}\right] A\right)
$$

- We then interpret types by straightforward struct. recursion, e.g.,

$$
\llbracket[\tau] X \rrbracket \stackrel{\text { def }}{=} \quad[\tau] \llbracket X \rrbracket
$$

Denotational semantics: (modal) types

- Want there to be strong monoidal functor (for temp. res. type)

$$
[-]:(\mathbb{N}, \leqslant) \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{3}$

$$
\varepsilon_{A}:[0] A \xrightarrow{\cong} A \quad \delta_{A, \tau_{1}, \tau_{2}}:\left[\tau_{1}+\tau_{2}\right] A \xrightarrow{\cong}\left[\tau_{1}\right]\left(\left[\tau_{2}\right] A\right)
$$

- We then interpret types by straightforward struct. recursion, e.g.,

$$
\llbracket[\tau] X \rrbracket \stackrel{\text { def }}{=} \quad[\tau] \llbracket X \rrbracket
$$

- In the presheaf example, we define [-] on objects as

$$
([\tau] A)(t) \stackrel{\text { def }}{=} A(t+\tau)
$$

${ }^{3}$ In Fitch-style, the $S 4$ modality \square is interpreted by an idempotent comonad

Denotational semantics: (modal) contexts

- Want there to be strong monoidal functor (for ctx. modalities)

$$
\langle-\rangle:(\mathbb{N}, \leqslant)^{\mathbf{o p}} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{4}$

$$
\eta_{A}: A \stackrel{\cong}{\cong}\langle 0\rangle A \quad \mu_{A, \tau_{1}, \tau_{2}}:\left\langle\tau_{1}\right\rangle\left(\left\langle\tau_{2}\right\rangle A\right) \xrightarrow{\cong}\left\langle\tau_{1}+\tau_{2}\right\rangle A
$$

Denotational semantics: (modal) contexts

- Want there to be strong monoidal functor (for ctx. modalities)

$$
\langle-\rangle:(\mathbb{N}, \leqslant)^{\mathbf{o p}} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{4}$

$$
\eta_{A}: A \stackrel{\cong}{\cong}\langle 0\rangle A \quad \mu_{A, \tau_{1}, \tau_{2}}:\left\langle\tau_{1}\right\rangle\left(\left\langle\tau_{2}\right\rangle A\right) \xrightarrow{\cong}\left\langle\tau_{1}+\tau_{2}\right\rangle A
$$

- We then interpret contexts as $\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \llbracket \Gamma \rrbracket^{e} \mathbb{1}$, where

$$
\llbracket \Gamma \rrbracket^{e}: \mathbb{C} \longrightarrow \mathbb{C} \quad \llbracket \Gamma,\langle\tau\rangle \rrbracket^{e} A \quad \stackrel{\text { def }}{=}\langle\tau\rangle\left(\llbracket \Gamma \rrbracket^{e} A\right)
$$

as we then conveniently have isos like $\llbracket \Gamma_{1}, \Gamma_{2} \rrbracket \cong \llbracket \Gamma_{2} \rrbracket^{e}\left(\llbracket \Gamma_{1} \rrbracket\right)$

Denotational semantics: (modal) contexts

- Want there to be strong monoidal functor (for ctx. modalities)

$$
\langle-\rangle:(\mathbb{N}, \leqslant)^{\mathbf{o p}} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with the strong monoidality witnessed by the natural isos. ${ }^{4}$

$$
\eta_{A}: A \xrightarrow{\cong}\langle 0\rangle A \quad \mu_{A, \tau_{1}, \tau_{2}}:\left\langle\tau_{1}\right\rangle\left(\left\langle\tau_{2}\right\rangle A\right) \xrightarrow{\cong}\left\langle\tau_{1}+\tau_{2}\right\rangle A
$$

- We then interpret contexts as $\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \llbracket \Gamma \rrbracket^{e} \mathbb{1}$, where

$$
\llbracket \Gamma \rrbracket^{e}: \mathbb{C} \longrightarrow \mathbb{C} \quad \llbracket \Gamma,\langle\tau\rangle \rrbracket^{e} A \quad \stackrel{\text { def }}{=}\langle\tau\rangle\left(\llbracket \Gamma \rrbracket^{e} A\right)
$$

as we then conveniently have isos like $\llbracket \Gamma_{1}, \Gamma_{2} \rrbracket \cong \llbracket \Gamma_{2} \rrbracket^{e}\left(\llbracket \Gamma_{1} \rrbracket\right)$

- In the presheaf example, we define $\langle-\rangle$ on objects as

$$
(\langle\tau\rangle A)(t) \quad \stackrel{\text { def }}{=} \quad(\tau \leqslant t) \times A(t \dot{-})
$$

${ }^{4}$ In Fitch-style, the ctx. modality for S 4 is interpreted by an idempotent monad

Denotational semantics: mod. interaction

- Want there to be a family of adjunctions ${ }^{5}$

$$
\langle\tau\rangle \dashv[\tau]
$$

witnessed by natural transformations

$$
\eta_{A, \tau}^{-1}: A \longrightarrow[\tau](\langle\tau\rangle A) \quad \varepsilon_{A, \tau}^{-1}:\langle\tau\rangle([\tau] A) \longrightarrow A
$$

- satisfying the standard triangle laws, and
- interacting well with the strong monoidal structures

Denotational semantics: mod. interaction

- Want there to be a family of adjunctions ${ }^{5}$

$$
\langle\tau\rangle \dashv[\tau]
$$

witnessed by natural transformations

$$
\eta_{A, \tau}^{-1}: A \longrightarrow[\tau](\langle\tau\rangle A) \quad \varepsilon_{A, \tau}^{-1}:\langle\tau\rangle([\tau] A) \longrightarrow A
$$

- satisfying the standard triangle laws, and
- interacting well with the strong monoidal structures
- In the presheaf example,
- $\eta_{A, \tau}^{-1}$ and $\varepsilon_{A, \tau}^{-1}$ are given by id. on A-values, plus by $\leqslant-$ reasoning
- $\varepsilon_{A, \tau}^{-1}$ is definable because of the $(\tau \leqslant t)$ condition in $(\langle\tau\rangle A)(t)$

Denotational semantics: comp. effects

- Want there to be a graded monad (disc. graded as no sub-eff.)

$$
T: \mathbb{N} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with unit and multiplication (satisfying appropriate laws)

$$
\eta_{A}^{T}: A \longrightarrow T 0 A \quad \mu_{A, \tau_{1}, \tau_{2}}^{T}: T \tau_{1}\left(T \tau_{2} A\right) \longrightarrow T\left(\tau_{1}+\tau_{2}\right) A
$$

Denotational semantics: comp. effects

- Want there to be a graded monad (disc. graded as no sub-eff.)

$$
T: \mathbb{N} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with unit and multiplication (satisfying appropriate laws)

$$
\eta_{A}^{T}: A \longrightarrow T 0 A \quad \mu_{A, \tau_{1}, \tau_{2}}^{T}: T \tau_{1}\left(T \tau_{2} A\right) \longrightarrow T\left(\tau_{1}+\tau_{2}\right) A
$$

and with a [-]-strength ${ }^{6}$ (satisfying variants of std. str. laws)

$$
\operatorname{str}_{A, B, \tau}^{T}:[\tau] A \times T \tau B \longrightarrow T \tau(A \times B)
$$

Denotational semantics: comp. effects

- Want there to be a graded monad (disc. graded as no sub-eff.)

$$
T: \mathbb{N} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with unit and multiplication (satisfying appropriate laws)

$$
\eta_{A}^{T}: A \longrightarrow T 0 A \quad \mu_{A, \tau_{1}, \tau_{2}}^{T}: T \tau_{1}\left(T \tau_{2} A\right) \longrightarrow T\left(\tau_{1}+\tau_{2}\right) A
$$

and with a $[-]$-strength ${ }^{6}$ (satisfying variants of std. str. laws)

$$
\operatorname{str}_{A, B, \tau}^{T}:[\tau] A \times T \tau B \longrightarrow T \tau(A \times B)
$$

- The latter is equivalent to [-]-variant of enrichment of T, i.e.,

$$
[\tau](A \Rightarrow B) \longrightarrow(T \tau A \Rightarrow T \tau B)
$$

Denotational semantics: comp. effects

- Want there to be a graded monad (disc. graded as no sub-eff.)

$$
T: \mathbb{N} \longrightarrow[\mathbb{C}, \mathbb{C}]
$$

with unit and multiplication (satisfying appropriate laws)

$$
\eta_{A}^{T}: A \longrightarrow T 0 A \quad \mu_{A, \tau_{1}, \tau_{2}}^{T}: T \tau_{1}\left(T \tau_{2} A\right) \longrightarrow T\left(\tau_{1}+\tau_{2}\right) A
$$

and with a $[-]$-strength ${ }^{6}$ (satisfying variants of std. str. laws)

$$
\operatorname{str}_{A, B, \tau}^{\top}:[\tau] A \times T \tau B \longrightarrow T \tau(A \times B)
$$

- The latter is equivalent to [-]-variant of enrichment of T, i.e.,

$$
[\tau](A \Rightarrow B) \longrightarrow(T \tau A \Rightarrow T \tau B)
$$

- Also require T to have alg. ops. and support for eff. handling

Denotational semantics: comp. effects

- In the presheaf example, the graded monad ${ }^{7}$ is given by cases

$$
\begin{gathered}
\frac{a \in A(t)}{\operatorname{ret} a \in(T 0 A)(t)} \\
\frac{a \in \llbracket A_{\mathrm{op}} \rrbracket(t) \quad k \in\left(\left[\tau_{\mathrm{op}}\right]\left(\llbracket B_{\mathrm{op}} \rrbracket \Rightarrow T \tau A\right)\right)(t)}{\text { op } a k \in\left(T\left(\tau_{\mathrm{op}}+\tau\right) A\right)(t)} \\
\frac{k \in[\tau]\left(T \tau^{\prime} A\right)(t)}{\operatorname{delay} \tau k \in\left(T\left(\tau+\tau^{\prime}\right) A\right)(t)}
\end{gathered}
$$

with the graded-monadic structure given by unsurprising recursion

Denotational semantics: comp. effects

- In the presheaf example, the graded monad ${ }^{7}$ is given by cases

$$
\begin{gathered}
\frac{a \in A(t)}{\operatorname{ret} a \in(T 0 A)(t)} \\
\frac{a \in \llbracket A_{\mathrm{op}} \rrbracket(t) \quad k \in\left(\left[\tau_{\mathrm{op}}\right]\left(\llbracket B_{\mathrm{op}} \rrbracket \Rightarrow T \tau A\right)\right)(t)}{\text { op } a k \in\left(T\left(\tau_{\mathrm{op}}+\tau\right) A\right)(t)} \\
\frac{k \in[\tau]\left(T \tau^{\prime} A\right)(t)}{\operatorname{delay} \tau k \in\left(T\left(\tau+\tau^{\prime}\right) A\right)(t)}
\end{gathered}
$$

with the graded-monadic structure given by unsurprising recursion

- Direct def. in our Agda formalisation uses induction-recursion
- IR needed so that k is natural for continuations in effect handling

Denotational semantics: (value) terms

- The interpretation of terms is unsurprising
- follows usual patterns of interpreting FGCBV terms
- just need to carefully manage the $\langle-\rangle$ and $[-]$ modalities

Denotational semantics: (value) terms

- The interpretation of terms is unsurprising
- follows usual patterns of interpreting FGCBV terms
- just need to carefully manage the $\langle-\rangle$ and $[-]$ modalities
- For example, variables are interpreted as (product) projections

$$
\begin{aligned}
\llbracket \Gamma, x: X, \Gamma^{\prime} \vdash x: X \rrbracket & \stackrel{\text { def }}{=} \\
\llbracket \Gamma, x: X, \Gamma^{\prime} \rrbracket & \xrightarrow{\cong} \llbracket \Gamma^{\prime} \rrbracket^{e}(\llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{\mathrm{e}} \\
& \left\langle\text { time } \Gamma^{\prime}\right\rangle(\llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{\varepsilon^{\diamond}} \llbracket \Gamma \rrbracket \times \llbracket X \rrbracket \xrightarrow{\text { snd }} \llbracket X \rrbracket
\end{aligned}
$$

Denotational semantics: (value) terms

- The interpretation of terms is unsurprising
- follows usual patterns of interpreting FGCBV terms
- just need to carefully manage the $\langle-\rangle$ and $[-]$ modalities
- For example, variables are interpreted as (product) projections

$$
\begin{aligned}
\llbracket \Gamma, x: X, \Gamma^{\prime} \vdash x: X \rrbracket & \stackrel{\text { def }}{=} \\
\llbracket \Gamma, x: X, \Gamma^{\prime} \rrbracket & \xlongequal{\cong} \llbracket \Gamma^{\prime} \rrbracket^{e}(\llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{\mathrm{e}} \\
& \left\langle\text { time } \Gamma^{\prime}\right\rangle(\llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{\varepsilon^{\diamond}} \llbracket \Gamma \rrbracket \times \llbracket X \rrbracket \xrightarrow{\text { snd }} \llbracket X \rrbracket
\end{aligned}
$$

and boxing is interpreted using the unit of $\langle\tau\rangle \dashv[\tau]$

$$
\llbracket \Gamma \vdash \operatorname{box}_{\tau} V:[\tau] X \rrbracket \stackrel{\text { def }}{=} \llbracket \Gamma \rrbracket \xrightarrow{\eta^{\dashv}}[\tau](\langle\tau\rangle \llbracket \Gamma \rrbracket) \xrightarrow{[\tau](\llbracket V \rrbracket)}[\tau] \llbracket X \rrbracket
$$

Denotational semantics: comp. terms

- Seq. comp. is interpreted using η^{\dashv} and str ${ }^{T}$-followed-by- μ^{T}

$$
\begin{aligned}
& \llbracket \Gamma \vdash \text { let } x=M \text { in } N: Y!\tau+\tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \\
& \llbracket\left\lceil\rrbracket \xrightarrow{\left\langle\eta^{\dashv}, \llbracket M \rrbracket\right\rangle}[\tau](\langle\tau\rangle \llbracket \Gamma \rrbracket) \times T \tau \llbracket X \rrbracket \xrightarrow{\text { str }^{T}}\right. \\
& \quad T \tau(\langle\tau\rangle \llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{T \tau(\llbracket N \rrbracket)} \\
& \quad T \tau\left(T \tau^{\prime} \llbracket Y \rrbracket\right) \xrightarrow{\mu^{T}} T\left(\tau+\tau^{\prime}\right) \llbracket Y \rrbracket
\end{aligned}
$$

Denotational semantics: comp. terms

- Seq. comp. is interpreted using η^{\dashv} and str ${ }^{T}$-followed-by- μ^{T}

$$
\begin{aligned}
& \llbracket \Gamma \vdash \text { let } x=M \text { in } N: Y!\tau+\tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \\
& \begin{array}{l}
\llbracket \Gamma \rrbracket \xrightarrow{\left\langle\eta^{\dashv}, \llbracket M \rrbracket\right\rangle}[\tau](\langle\tau\rangle \llbracket \Gamma \rrbracket) \times T \tau \llbracket X \rrbracket \xrightarrow{\text { str }^{T}} \\
T \tau(\langle\tau\rangle \llbracket \Gamma \rrbracket \times \llbracket X \rrbracket) \xrightarrow{T \tau(\llbracket N \rrbracket)} \\
\\
T \tau\left(T \tau^{\prime} \llbracket Y \rrbracket\right) \xrightarrow{\mu^{T}} T\left(\tau+\tau^{\prime}\right) \llbracket Y \rrbracket
\end{array}
\end{aligned}
$$

and unboxing is interpreted using $|-|_{\tau} \dashv\langle\tau\rangle$ and $\langle\tau\rangle \dashv[\tau]$

$$
\llbracket \Gamma \vdash \text { unbox }_{\tau} V \text { as } x \text { in } N: Y!\tau^{\prime} \rrbracket \stackrel{\text { def }}{=}
$$

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket \xrightarrow{\left\langle\text { id }, \mathrm{e}^{\prime}\right\rangle} \llbracket \Gamma \rrbracket \times\langle\tau\rangle\left(\llbracket|\Gamma|_{\tau} \rrbracket\right) \xrightarrow{\text { id } \times\langle\tau\rangle(\llbracket V \rrbracket)} \\
& \quad \llbracket \Gamma \rrbracket \times\langle\tau\rangle([\tau] \llbracket X \rrbracket) \xrightarrow{\text { id } \times \varepsilon^{\dashv}} \llbracket \Gamma \rrbracket \times \llbracket X \rrbracket \xrightarrow{\llbracket N \rrbracket} T \tau^{\prime} \llbracket Y \rrbracket
\end{aligned}
$$

Denotational semantics: soundness

- The soundness theorem

$$
\ulcorner\vdash I \equiv J \quad \text { implies } \quad \llbracket \Gamma \vdash I \rrbracket \equiv \llbracket \Gamma \vdash J \rrbracket
$$

is proved

- by unsurprising induction on given derivations
- by using the categorical structure we required above
- by proving semantic renaming and substitution lemmas
- by relating syntactic renamings with semantic morphisms

Denotational semantics: soundness

- The soundness theorem

$$
\Gamma \vdash I \equiv J \quad \text { implies } \quad \llbracket \Gamma \vdash I \rrbracket \equiv \llbracket \Gamma \vdash J \rrbracket
$$

is proved

- by unsurprising induction on given derivations
- by using the categorical structure we required above
- by proving semantic renaming and substitution lemmas
- by relating syntactic renamings with semantic morphisms
- The completeness theorem

$$
\llbracket \Gamma \vdash I \rrbracket \equiv \llbracket \Gamma \vdash J \rrbracket \text { in all models } \quad \text { implies } \quad \Gamma \vdash I \equiv J
$$

is left for future work (e.g., when sub-eff. question is resolved)

Conclusion

Conclusion

- Temporal resources can be naturally captured using
- modal temporal resource types $[\tau] X$
- context modalities $\Gamma,\langle\tau\rangle$
- with a time-graded variant of Fitch-style presentation
- with a temporally aware type-and-effect system
- with a natural category-theoretic semantics
- Draft paper: When programs have to watch paint dry
https://arxiv.org/abs/2210.07738
- (Work in progress) Agda formalisation

Some ongoing/future work directions

- Sub-effecting
- as sub-effecting $M=$ all-possible-ways-to-insert-delays-into- M ?
- (Primitive) recursion
- grade of rec $V M_{z}$ x.k. M_{s} computed by iteration/recursion
- M_{z} and M_{s} being temporally aware depending on iteration no.
- leads to needing type dependency (on V s being recursed on)
- Generalising gradings
- other $(\mathbb{N}, 0,+,-, \leqslant)$-like structures, e.g., (sets of) traces or states
- different structures, e.g., as $\Gamma,\langle\tau($ trace $)\rangle, x: X \vdash N: Y$! trace ${ }^{\prime}$
- maybe more generally as $\Gamma,\langle\tau(\Gamma$, trace $)\rangle, x: X \vdash N: Y$! trace ${ }^{\prime}$
- Expiring resources
- where resources are usable only for an interval, e.g., as $\left[\tau, \tau^{\prime}\right] X$

