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e session types, coeffect systems, runners of (alg.) effs., ...

e We instead focus on when resources are used

e values might become usable only after some time
e want to avoid unnecessary blocking and idle waiting

e but also start work as soon as resources become available



Temporal resources are also important!

e Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in

assemble (body', left-door', right-door')
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Temporal resources are also important!

e Consider controlling robot arms on a production line:

let (body', left-door', right-door') =
paint (body, left-door, right-door) in
< T4ry time needs to pass
assemble (body', left-door', right-door')

e Correctness relies on the parts given enough time to dry

(a) a scheduler could dynamically block execution, or

(b) a compiler could insert enough time delay between op. calls

e But how to reason about the result being temporally correct?

e we focus on the kinds of code emitted by (b), or written

directly when full control and predictability is important

e we develop type-based means for reasoning about its correctness



Temporal resources are also important!

e Not just about assembling (car) parts:

e interrupt-handling (in low-level embedded loT code)

e handler code should run in predictable time

e should account for fetching any necessary resources
e make use of as many of the limited MCU cycles as possible

e (the receiving end of op. calls and interrupts from sensors)

e asynchronous programming (via async/await, futures, ...)

e want time guarantees about when async. comps. come back

e to know when it is safe to synchronise (for minimal blocking)



Today’s plan
e Temporal resources via time-graded modal types

e enforcing temporal correctness for the robot arms example

e A core calculus for safe programming with temporal resources
e Fitch-style time-graded modal types (for temporal resources)
e temporally aware graded algebraic effects (for time passage)

e temporally aware effect handlers (for user-defined effects)

e A sound denotational semantics justifying the proposed design
e adjoint strong monoidal functors (for modalities)
e [—]-strong time-graded monad (for effectful computations)

e a presheaf example (for concreteness and intuition)
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Today’s plan
e Temporal resources via time-graded modal types

e enforcing temporal correctness for the robot arms example

e A core calculus for safe programming with temporal resources
e Fitch-style time-graded modal types (for temporal resources)
e temporally aware graded algebraic effects (for time passage)

e temporally aware effect handlers (for user-defined effects)

e A sound denotational semantics justifying the proposed design
e adjoint strong monoidal functors (for modalities)
e [—]-strong time-graded monad (for effectful computations)

e a presheaf example (for concreteness and intuition)

e Agda form.: https://github.com/danelahman/temporal-resources
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General desiderata

e Recall the production line example
let (body', left-door', right-door') =
paint (body, left-door, right-door) in
< T4ry time needs to pass
assemble (body', left-door', right-door")
e In general, we want a flexible framework in which

e time delay between paint and assemble

e could be given by blocking execution with delay, but
e equally well could be given by doing other useful work, and
e want it to be as much as needed and as little as possible

e (body’, left-door’, right-door’) can have separate drying times
e executing operations (e.g., delay) should make time pass

e ops. should be redefinable, while preserving temporal correctness



A naive solution attempt

e What if we stay in a simply typed effectful language and
additionally make paint return the desired drying time?

let (74ry, body', left-door', right-door') =
paint (body, left-door, right-door) in

delay 74,y;
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A naive solution attempt

e What if we stay in a simply typed effectful language and
additionally make paint return the desired drying time?
let (74ry, body', left-door', right-door') =
paint (body, left-door, right-door) in
delay 74,y; < Tgry time now passes

assemble (body', left-door', right-door')

e So, are we done?
e No,
e all the burden for correctness is on the programmer’s shoulders
e typechecker saying yes does not guarantee that delay happens, or

that it happens where it is supposed to happen, e.g., do not want

assemble (body', left-door', right-door');
delay g, < total time of program still Tqry + Tassemble
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Our solution: temporal resource types
e We use a time-graded modal type to capture temporal resources
XY, Z == ... | [7]X
e.g., allowing us to work with resource values/vars. such as

body’ : [7ary] Body  left-door’ : [74r | Door

e Intuition 1: [7] X denotes that an X-typed resource becomes

usable in at most 7 time units (and remains so afterwards)

e Intuition 2: at least 7 time units need to pass before a

program is allowed to access the underlying X-typed resource
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Our solution: temporal resource type

e Presented as time-graded variant of Fitch-style modal types

e Contexts are extended with context modalities

r == - | Lx:xX | IL{r)

¢ Introduction form is given by boxing up a temp. resource
N{r)rVv:X
I box, V:[7]X

e Elimination rule is given by unboxing a temp. resource
7 < timel T,V [r]X OLx:XEN:Y!7
[~ unbox, Vasxin N:Y 7

where ||, takes I to a 7 time units earlier state!, e.g., as in

[T, x: X, (4, y: Y (1),z:Z|3 = ,x:X,{(2)

We have | — |, 4 {7 ) for contexts I with 7 < time[ and rens. between them.
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Our solution: how we make time pass
e We propose temporally aware graded algebraic effects, e.g.,
paint : Part ~~ [—Tm ' Thaint
giving rise to operation calls with temporal awareness

I+~ V : Body x Door x Door
[, {Tpaint ) » ¥:[Tdry] Body x [T4ry] Door x [7gry ] Door =M : X I 7
M= paint V (y. M) : X | Tpaine + 7

where the cont. M can assume that 7,.i,; additional time has

passed before it starts executing (compared to paint V (y. M))

e This “temporal action” also happens in seq. composition

rMN=M:X!'!r r,(r), xXN:Y!7
M—letx=MinN:Y!7+7
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Our solution: back to controlling robot arm

e Using the above, we can now rewrite our example as

let (body', left-door', right-door') = < resource-typed variables
paint (body, left-door, right-door) in

delay 74y; < forces 74y, time to pass

unbox body' as body'' in «— context: [, body’:[74y]Body , ..., {(Tary )
unbox left-door' as left-door'" in
unbox right-door' as right-door'" in

assemble (body", left-door", right-door'') <« non-resource-typed variables

This looks remarkably similar to the naive attempt from earlier!

o Alternatively, instead of blocking execution with
delay 74y;
we could have equally well called enough other useful operations

Op1; OP2; ---; OPn; < as long as they collectively take > 74, time
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Core calculus: types

e Based on Levy et al’s fine-grain call-by-value (FGCBV) calculus

Ground types (for base types b € 3, and where 7 € N)
AB = b | 1| AxB | [r]A

Operation signatures (for operations op € O)

op @ Asp ~ Bop ! Top

Value types (extend ground types)

XY, Z = A| XxY | X>Y!Ir | [7]X

Computation types
X!r



Core calculus: terms

e Terms are split into values and computations

e Values

V, W

x | (Voo Vo) | O | -t | boxs V

e Computations

M, N

return V

let x =M in N

opV (y.M) «— user-redefinable via handling
delay 7 M < primitive, not user-definable

handle M with (x.k.Mop)opeo to y in N

unbox, V as x in N



Core calculus: type system

e Well-typed values and computations typed using judgements
N v:X rM:X!r

e For example, typing rules for variables? and returning values

MN-v:X
Mx: X, M =x: X N=return V: X 10

and for effect handling

T=M: X!t F,(ry, y: XN:Y !

(VT”. r, XiAop , kZ[Top](Bop — Y!T”) - Mop Y | Top +7-//>opeo

I — handle M with (X'k'MOP)opeo toyinN:Y 747

2No restriction on I’ compared to Clouston's Fitch-style modal lambda-calculi



Core calculus: type system

e Well-typed values and computations typed using judgements
N v:X rM:X!r

e For example, typing rules for variables? and returning values

MN-v:X
Mx: X, M =x: X N=return V: X 10

and for effect handling

T=M: X!t F,(ry, y: XN:Y !

(VT”. r, XiAop , kZ[Top](Bop — Y!T”) - Mop Y | Top +7-//>opeo

I — handle M with (X'k'MOP)opeo toyinN:Y 747

e Note: No sub-effecting! Non-trivial due to (7). Future work.

2No restriction on I’ compared to Clouston's Fitch-style modal lambda-calculi
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Core calculus: admissible typing rules

e Standard structural rules (weakening, contraction, exchange)

e Strong monoidal functor (with co-strength) laws for { —)
F(0Y-J Tdn+n)-d T(rd-J 7<7 T{r)x: X+ J
TTeJ Tdm)(myrd Ty d ToxaX(ryrd

e for 2nd rule it is useful that unbox uses | I |; and not ', T

e 4th rule shows that all types are monotone with respect to time
e Proof sketch (for the above two groups of rules):
(a) inductively define renaming relation p : I~ [’
(b) prove thatif '~ Jand p: T ~ I, then I - J[p]
e Substitution rules
Mx: X, "= J rM-v:X
rr e JVv/x]
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Core calculus: equational theory

e Given by equations between well-typed values and computations
N-v=w:X rMN-M=N:X!r71

Standard (- /1-equations of FGCBV-based calculi, e.g.,
[ (let x =return Vin N)=N[V/x]: Y I 7

Algebraicity equations for algebraic operations

Homomorphism equations for effect handling

(- /n-equations for temporal resources
[+ unbox, (box, V)asxin N=N[V/x]:Y 7
[+ unbox, W as x in N[box, x/y] = N[W/y] : Y 1 7/

Optional extension: 0- and +-equations for delay ops.
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Denotational semantics: big picture

Given suitable category C and suitable structure (e.g., T) on it

Given objects [[b]] € C for all base types b e B

We interpret types X as objects [X] € C

We interpret contexts ' as objects [[ € C

We interpret well-typed values I — V : X as morphisms
[T=V:X]: [ — [X]

We interpret well-typed computations [ — M : X | 7 as

MM XV7]: T — T7[X]

Such that: If '/ =J, then [T /]| =[I'+ J] (soundness)



Denotational semantics: category C
e Want C to have binary products (1, A x B)

e Want C to have exponentials A =B

e for completeness, would need to restrict to Kleisli exponentials
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Denotational semantics: category C
e Want C to have binary products (1, A x B)

e Want C to have exponentials A =B

e for completeness, would need to restrict to Kleisli exponentials

e Example: presheaf category Set™<

e objects are covariant functors A: (N, <) — Set
e gives Kripke's possible worlds style semantics

e but with all types being monotone: given A € SetN<) | then

t1 < b implies A(t‘l < t2) : A(tl) — A(tg)

e and when unfolding std. defs., exponentials are given as

(A=B)(t) (ft/:A(t’)—>B(t')

t'e{t’eN | t<t'}

where all fi are also asked to be natural in ¢/



Denotational semantics: (modal) types
e Want there to be strong monoidal functor (for temp. res. type)

with the strong monoidality witnessed by the natural isos.3

ea:[0JA— A Sann:[n+ 1] A= [n]([n] A)

3In Fitch-style, the S4 modality O is interpreted by an idempotent comonad
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e Want there to be strong monoidal functor (for temp. res. type)
3

with the strong monoidality witnessed by the natural isos.

ea:[0JA— A Sann:[n+ 1] A= [n]([n] A)

e We then interpret types by straightforward struct. recursion, e.g.,

[r1x] = [r11X]

e In the presheaf example, we define [—] on objects as

([F1A)() = Alt+7)

3In Fitch-style, the S4 modality O is interpreted by an idempotent comonad
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e Want there to be strong monoidal functor (for ctx. modalities)
(=):(N,<)* —[C,C]
with the strong monoidality witnessed by the natural isos.*

na:A—{0)A  panm, {1)((T)A) — {1 +7)A

o We then interpret contexts as [ = []¢1, where
[rpe:¢—=¢ [T.(mIeA = () ([T A)
as we then conveniently have isos like [, o] = [2]¢ ([T1])

e In the presheaf example, we define { —) on objects as

(THA)(t) = (1<t)xAlt=T1)

#In Fitch-style, the ctx. modality for S4 is interpreted by an idempotent monad
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Denotational semantics: mod. interaction
e Want there to be a family of adjunctions®
(1) 7]
witnessed by natural transformations

M A— [T1(7)A) ear (T (T]A) — A

e satisfying the standard triangle laws, and

e interacting well with the strong monoidal structures

¢ In the presheaf example,

. 17;'77 and 517 are given by id. on A-values, plus by <-reasoning

. SZ\'J is definable because of the (7 < t) condition in ({7 )A)(t)

5In Fitch-style modal A-calculi, one also requires an adjunction between mods.
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Denotational semantics: comp. effects
e Want there to be a graded monad (disc. graded as no sub-eff.)
T:N— [C,C]
with unit and multiplication (satisfying appropriate laws)
My A—TO0A  ph,. . T (TnA) —T(n+n)A
and with a [—]-strength® (satisfying variants of std. str. laws)
stthg, [TJAx TTB— T7(AxB)

e The latter is equivalent to [—|-variant of enrichment of T, i.e.,

[T](A=B) — (TTA=Tr71B)

o Also require T to have alg. ops. and support for eff. handling

6Terminology follows the parlance of Bierman and de Paiva ({ was [J-strong)



Denotational semantics: comp. effects

e In the presheaf example, the graded monad’ is given by cases

ac A(t)
retae (TOA)(t)

ae[Apll(t) ke ([rop] ([Bopll = T7A))(t)
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with the graded-monadic structure given by unsurprising recursion

"This T is for the setting where there are no delay-equations in the calculus



Denotational semantics: comp. effects

e In the presheaf example, the graded monad’ is given by cases

ac A(t)
retae (TOA)(t)

ae[Apll(t) ke ([rop] ([Bopll = T7A))(t)
opak e (T (top + 7) A)(1)

ke |r](TT A)(t)
delay 7 k € (T (7 + 7') A)(t)

with the graded-monadic structure given by unsurprising recursion

e Direct def. in our Agda formalisation uses induction-recursion

o IR needed so that k is natural for continuations in effect handling

"This T is for the setting where there are no delay-equations in the calculus
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e follows usual patterns of interpreting FGCBV terms
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Denotational semantics: (value) terms

e The interpretation of terms is unsurprising

e follows usual patterns of interpreting FGCBV terms

e just need to carefully manage the ( — ) and [—] modalities
e For example, variables are interpreted as (product) projections
[Fx:X,I"=x:X] &
72X, ) — (] (7] > [X]) ——
Ceime ™S (IT] % [XT) —— 7] % [X] = [X]

and boxing is interpreted using the unit of (7 ) — [7]

[T+ box Vi [7]X] = [I] —>[ 1< >[[r]]) D [711X1]



Denotational semantics: comp. terms
e Seq. comp. is interpreted using 1~ and str’-followed-by- ;"
[Tletx=MinN:Y!r+7] &

S MDD str’
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Iri




Denotational semantics: comp. terms
e Seq. comp. is interpreted using 1~ and str’-followed-by- ;"
[Tletx=MinN:Y!r+7] &

L I < T

(eI > IXT)

Tr(TH[Y]) — T(r+)[Y]

Iri

and unboxing is interpreted using | — |, -{ {7 ) and {7 ) —{ [T]
[T = unbox; Vasxin N:Y 7] &f
(v

[ QRS T SRS T 1

[ x (o ([ [XT) v

[F1 > X — T[]




Denotational semantics: soundness
e The soundness theorem
Fr=1l=J implies [[FT=I]=[T+J]
is proved

e by unsurprising induction on given derivations

by using the categorical structure we required above

by proving semantic renaming and substitution lemmas

by relating syntactic renamings with semantic morphisms



Denotational semantics: soundness
e The soundness theorem
Fr=1l=J implies [[FT=I]=[T+J]
is proved

e by unsurprising induction on given derivations

by using the categorical structure we required above

by proving semantic renaming and substitution lemmas

by relating syntactic renamings with semantic morphisms

e The completeness theorem
[F= 1] =TI+ J] in all models implies r=1=J

is left for future work (e.g., when sub-eff. question is resolved)



Conclusion



Conclusion

e Temporal resources can be naturally captured using

modal temporal resource types [7] X

context modalities I',{7)

with a time-graded variant of Fitch-style presentation
with a temporally aware type-and-effect system

with a natural category-theoretic semantics

e Draft paper: When programs have to watch paint dry

https://arxiv.org/abs/2210.07738

e (Work in progress) Agda formalisation

https://github.com/danelahman/temporal-resources


https://arxiv.org/abs/2210.07738
https://github.com/danelahman/temporal-resources

Some ongoing/future work directions
e Sub-effecting

e as sub-effecting M = all-possible-ways-to-insert-delays-into-M?
¢ (Primitive) recursion
e grade of rec V M, x.k.Ms computed by iteration/recursion
e M, and M; being temporally aware depending on iteration no.
e leads to needing type dependency (on Vs being recursed on)
¢ Generalising gradings
e other (N, 0, +, —, <)-like structures, e.g., (sets of ) traces or states
o different structures, e.g., as I,{7(trace) ), x: X + N : Y ! trace/
e maybe more generally as [, {7(I',trace) ), x: X + N: Y ! trace’

e Expiring resources

e where resources are usable only for an interval, e.g., as [7, 7] X



