
Towards refined notions of computation:

the global state example

Danel Ahman

LFCS, University of Edinburgh

20 December 2012

joint work with Gordon Plotkin and Alex Simpson

Overview

• Moggi’s monadic approach to computational effects

• Lawvere theories
and the computational effects they identify

• Refinement types
and adding more detailed specifications

• Refinement types + Lawvere theories = ?
on an example of refined global state

Moggi’s monadic approach

Moggi’s monadic approach
• Semantics of pure simply-typed lambda calculus:

• take a cartesian-closed category C
• interpret base types α, β, ... as objects JαK, JβK, ...
• interpret product type as finite product structure on C
• interpret (pure) function type σ → τ

as the exponential JσK⇒ JτK
• interpret value terms Γ ` t : σ as morphisms JΓK −→ JσK

• Moggi’s insight for impure languages:
• use a strong monad T : C −→ C

to model computational effects

• T JσK stands for computations returning values from JσK
• interpret impure function type σ ⇀ τ

as the Kleisli exponential JσK⇒ T JτK
• interpret computations as Kleisli maps JΓK −→ T JσK

Moggi’s monadic approach
• Semantics of pure simply-typed lambda calculus:

• take a cartesian-closed category C
• interpret base types α, β, ... as objects JαK, JβK, ...
• interpret product type as finite product structure on C
• interpret (pure) function type σ → τ

as the exponential JσK⇒ JτK
• interpret value terms Γ ` t : σ as morphisms JΓK −→ JσK

• Moggi’s insight for impure languages:
• use a strong monad T : C −→ C

to model computational effects

• T JσK stands for computations returning values from JσK
• interpret impure function type σ ⇀ τ

as the Kleisli exponential JσK⇒ T JτK
• interpret computations as Kleisli maps JΓK −→ T JσK

Moggi’s monadic approach
• Example monads proposed by Moggi

• exceptions - TX = X + E

• global state - TX = (S × X)S

• (stateful computations S × X −→ S × Y)

• local state - (TX)n = (

∫ m∈(n/I)

(Sm × Xm))Sn

• finite nondeterminism - TX = F+X

• continuations - TX = RRX

• Also possible to combine different monads, e.g.,

• state plus exceptions - TX = (S × (X + E))S

Moggi’s monadic approach

• Moggi’s work gives us an elegant denotational semantics
of computational effects

• However, this denotation does not tell us much about
how to construct such effects

• We have to note their operational meaning and how such
effects (e.g., state) are implemented in programming
languages

Lawvere theories

Lawvere theories
• A countable Lawvere theory consists of:

• a small category L with countable products

• an id. on objects countable-product preserving functor

J : ℵop1 −→ L
• (where ℵ1 is the skeleton of the category of countable

sets)

• Think of the hom L(n, 1) (abbrv. L(J(n), J(1)))
as a set of n-ary operations in the theory

• Then it suffices to give an algebraic theory as:

• operations of are given by morphisms op : O −→ I

• (equivalently a family of operations opi∈I : O −→ 1)

• equations are given by commuting diagrams

Models of Lawvere theories
• A model of a Lawvere theory (L, J) in a category C with

countable products
• is a countable product preserving functor M : L −→ C

• The models of L together with nat. transfs. :
• form a category Mod(L, C) with U : Mod(L, C) −→ C
• having a left adjoint F : C −→ Mod(L, C)
• the adjoint functors induce a monad T = UF

• For the purposes of this talk, we let C = Set

• To give a model M of L is equivalent to
• giving a set X = M1

• for every operation op : O −→ I a morphism XO −→ X I

• Because
• M1 determines MO up to coherent isomorphism

• MO ∼= M(
∏
o∈O

1) ∼=
∏
o∈O

(M1) ∼= (M1)O

Models of Lawvere theories
• A model of a Lawvere theory (L, J) in a category C with

countable products
• is a countable product preserving functor M : L −→ C

• The models of L together with nat. transfs. :
• form a category Mod(L, C) with U : Mod(L, C) −→ C
• having a left adjoint F : C −→ Mod(L, C)
• the adjoint functors induce a monad T = UF

• For the purposes of this talk, we let C = Set

• To give a model M of L is equivalent to
• giving a set X = M1

• for every operation op : O −→ I a morphism XO −→ X I

• Because
• M1 determines MO up to coherent isomorphism

• MO ∼= M(
∏
o∈O

1) ∼=
∏
o∈O

(M1) ∼= (M1)O

Global state example

• Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

• Countable set of values V and a finite set of locations Loc

• Take the set of states to be S = V Loc

• The theory is freely generated by operations
• lookup : V −→ Loc
• update : 1 −→ Loc × V

subject to commuting diagrams expressed set-theoretically

1 lookuploc(updateloc,v (x))v = x
2 lookuploc(lookuploc(xvv ′)v)v ′ = lookuploc(xvv)v
3 updateloc,v (updateloc,v ′(x)) = updateloc,v ′(x)
4 updateloc,v (readloc(x ′v)′v) = updateloc,v (xv)
5 updateloc,v (updateloc ′,v ′(x)) =

updateloc ′,v ′(updateloc,v (x)) (loc 6= loc ′)
6 ...

Global state example

• Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

• Countable set of values V and a finite set of locations Loc

• Take the set of states to be S = V Loc

• The theory is freely generated by operations
• lookup : V −→ Loc
• update : 1 −→ Loc × V

subject to commuting diagrams expressed set-theoretically

1 lookuploc(updateloc,v (x))v = x
2 lookuploc(lookuploc(xvv ′)v)v ′ = lookuploc(xvv)v
3 updateloc,v (updateloc,v ′(x)) = updateloc,v ′(x)
4 updateloc,v (readloc(x ′v)′v) = updateloc,v (xv)
5 updateloc,v (updateloc ′,v ′(x)) =

updateloc ′,v ′(updateloc,v (x)) (loc 6= loc ′)
6 ...

Global state example

• Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

• Countable set of values V and a finite set of locations Loc

• Take the set of states to be S = V Loc

• The theory is freely generated by operations
• lookup : V −→ Loc
• update : 1 −→ Loc × V

subject to commuting diagrams expressed set-theoretically

1 lookuploc(updateloc,v (x))v = x
2 lookuploc(lookuploc(xvv ′)v)v ′ = lookuploc(xvv)v
3 updateloc,v (updateloc,v ′(x)) = updateloc,v ′(x)
4 updateloc,v (readloc(x ′v)′v) = updateloc,v (xv)
5 updateloc,v (updateloc ′,v ′(x)) =

updateloc ′,v ′(updateloc,v (x)) (loc 6= loc ′)
6 ...

Global state example

• Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

• Countable set of values V and a finite set of locations Loc

• Take the set of states to be S = V Loc

• The theory is freely generated by operations
• lookup : V −→ Loc
• update : 1 −→ Loc × V

subject to commuting diagrams expressed set-theoretically

1 lookuploc(updateloc,v (x))v = x
2 lookuploc(lookuploc(xvv ′)v)v ′ = lookuploc(xvv)v
3 updateloc,v (updateloc,v ′(x)) = updateloc,v ′(x)
4 updateloc,v (readloc(x ′v)′v) = updateloc,v (xv)
5 updateloc,v (updateloc ′,v ′(x)) =

updateloc ′,v ′(updateloc,v (x)) (loc 6= loc ′)
6 ...

Global state example

• Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

• Countable set of values V and a finite set of locations Loc

• Take the set of states to be S = V Loc

• The theory is freely generated by operations
• lookup : V −→ Loc
• update : 1 −→ Loc × V

subject to commuting diagrams expressed set-theoretically

1 lookuploc(updateloc,v (x))v = x
2 lookuploc(lookuploc(xvv ′)v)v ′ = lookuploc(xvv)v
3 updateloc,v (updateloc,v ′(x)) = updateloc,v ′(x)
4 updateloc,v (readloc(x ′v)′v) = updateloc,v (xv)
5 updateloc,v (updateloc ′,v ′(x)) =

updateloc ′,v ′(updateloc,v (x)) (loc 6= loc ′)
6 ...

Small detour into local state

• (TX)n = (

∫ m∈(n/Inj)

(Sm × Xm))Sn

• Monad and algebra are given in category SetInj

• (Inj is the category of finite sets and injections)

• Ln = Inj(1, n), Vn = V , Sn = V n

• The algebra is given by
• lookup : XV −→ X Loc

• update : X −→ X Loc×V

• block : [L,X] −→ XV

• subject to appropriate diagrams commuting

• (Y X)n = [Inj , Set](X −×Inj(n,−),Y−)

• [X ,Y]n = [Inj , Set](X−,Y (n +−))

• See also work by Power (cotensoring models with
comodels) and Staton (completeness via nominal sets)

Small detour into local state

• (TX)n = (

∫ m∈(n/Inj)

(Sm × Xm))Sn

• Monad and algebra are given in category SetInj

• (Inj is the category of finite sets and injections)

• Ln = Inj(1, n), Vn = V , Sn = V n

• The algebra is given by
• lookup : XV −→ X Loc

• update : X −→ X Loc×V

• block : [L,X] −→ XV

• subject to appropriate diagrams commuting

• (Y X)n = [Inj , Set](X −×Inj(n,−),Y−)

• [X ,Y]n = [Inj , Set](X−,Y (n +−))

• See also work by Power (cotensoring models with
comodels) and Staton (completeness via nominal sets)

Small detour into local state

• (TX)n = (

∫ m∈(n/Inj)

(Sm × Xm))Sn

• Monad and algebra are given in category SetInj

• (Inj is the category of finite sets and injections)

• Ln = Inj(1, n), Vn = V , Sn = V n

• The algebra is given by
• lookup : XV −→ X Loc

• update : X −→ X Loc×V

• block : [L,X] −→ XV

• subject to appropriate diagrams commuting

• (Y X)n = [Inj , Set](X −×Inj(n,−),Y−)

• [X ,Y]n = [Inj , Set](X−,Y (n +−))

• See also work by Power (cotensoring models with
comodels) and Staton (completeness via nominal sets)

Small detour into local state

• (TX)n = (

∫ m∈(n/Inj)

(Sm × Xm))Sn

• Monad and algebra are given in category SetInj

• (Inj is the category of finite sets and injections)

• Ln = Inj(1, n), Vn = V , Sn = V n

• The algebra is given by
• lookup : XV −→ X Loc

• update : X −→ X Loc×V

• block : [L,X] −→ XV

• subject to appropriate diagrams commuting

• (Y X)n = [Inj , Set](X −×Inj(n,−),Y−)

• [X ,Y]n = [Inj , Set](X−,Y (n +−))

• See also work by Power (cotensoring models with
comodels) and Staton (completeness via nominal sets)

Refinement types

Refinement types

• Also known as predicate subtyping

• Assume we are given some simple types
• Nat, Loc, ...

• But often we want to talk about refined versions of them
• even natural numbers
• odd natural numbers
• open locations
• closed locations

• Refinement types provide us with such a framework

• ”equipping your existing type system with suitable logic”

Refinement types

• Well-formedness of refinement types

Γ ` σ : Ref (σ)

Γ ` φ : Ref (σ) Γ, x : φ ` P : wf

Γ ` (x : φ)P : Ref (σ)

Γ ` φ : Ref (σ1) Γ, x : φ ` ψ : Ref (σ2)

Γ ` Σx :φψ : Ref (σ1 × σ2)

Γ ` φ : Ref (σ) Γ, x : φ ` ψ : Ref (τ)

Γ ` Πx :φψ : Ref (σ → τ)

• Examples of typing rules

Γ ` t : φ Γ ` P[t/x]

Γ ` t : (x : φ)P

Γ, x : φ ` t : ψ

Γ ` λx : φ.t : Πx :φψ

Γ ` t1 : Πx :φψ Γ ` t2 : φ

Γ ` t1t2 : ψ[t2/x]

Refinement types

• Well-formedness of refinement types

Γ ` σ : Ref (σ)

Γ ` φ : Ref (σ) Γ, x : φ ` P : wf

Γ ` (x : φ)P : Ref (σ)

Γ ` φ : Ref (σ1) Γ, x : φ ` ψ : Ref (σ2)

Γ ` Σx :φψ : Ref (σ1 × σ2)

Γ ` φ : Ref (σ) Γ, x : φ ` ψ : Ref (τ)

Γ ` Πx :φψ : Ref (σ → τ)

• Examples of typing rules

Γ ` t : φ Γ ` P[t/x]

Γ ` t : (x : φ)P

Γ, x : φ ` t : ψ

Γ ` λx : φ.t : Πx :φψ

Γ ` t1 : Πx :φψ Γ ` t2 : φ

Γ ` t1t2 : ψ[t2/x]

Refinement types
• Set-theoretic semantics (ala. Denney)

• Interpret refinement type Γ ` φ : Ref (σ)
as a family of PERs JΓK −→ PER(JσK)

• other type constructors (sums,products) are interpreted
straightforwardly

• terms Γ ` t : φ are interpreted as JΓK −→ P(JσK)
(subsets denoting the ’total realizers’)

• Categorical semantics (ala. Jacobs)
• based on fibrations and comprehension categories

P

��

T //

��

C→

cod
}}

C

Refinement types
• Set-theoretic semantics (ala. Denney)

• Interpret refinement type Γ ` φ : Ref (σ)
as a family of PERs JΓK −→ PER(JσK)

• other type constructors (sums,products) are interpreted
straightforwardly

• terms Γ ` t : φ are interpreted as JΓK −→ P(JσK)
(subsets denoting the ’total realizers’)

• Categorical semantics (ala. Jacobs)
• based on fibrations and comprehension categories

P

��

T //

��

C→

cod
}}

C

Refining global state

Refining global state

• We had the finite set of locations Loc

• Assume that we now have predicates Open(Loc) and
Closed(Loc) = ¬Open(loc) on the locations Loc

• Conceptually they denote subsets of Loc

• We should only be able to read from and write to
locations that are open

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• However, notice that this requires an a priori given
collection of open locations

Refining global state

• We had the finite set of locations Loc

• Assume that we now have predicates Open(Loc) and
Closed(Loc) = ¬Open(loc) on the locations Loc

• Conceptually they denote subsets of Loc

• We should only be able to read from and write to
locations that are open

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• However, notice that this requires an a priori given
collection of open locations

Refining global state

• We had the finite set of locations Loc

• Assume that we now have predicates Open(Loc) and
Closed(Loc) = ¬Open(loc) on the locations Loc

• Conceptually they denote subsets of Loc

• We should only be able to read from and write to
locations that are open

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• However, notice that this requires an a priori given
collection of open locations

Refining global state
• So we should also add operations for opening and closing

locations

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• open : X −→ XClosed(Loc)

• close : X −→ XOpen(Loc)

• But we should be able to distinguish between
computations able to use different locations

• We could take inspiration from the algebra for local state
• work in the category SetW

• However, we don’t yet know what the appropriate
non-discrete world category and the corresponding
(monoidal) closed structure should be

Refining global state
• So we should also add operations for opening and closing

locations

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• open : X −→ XClosed(Loc)

• close : X −→ XOpen(Loc)

• But we should be able to distinguish between
computations able to use different locations

• We could take inspiration from the algebra for local state
• work in the category SetW

• However, we don’t yet know what the appropriate
non-discrete world category and the corresponding
(monoidal) closed structure should be

Refining global state
• So we should also add operations for opening and closing

locations

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• open : X −→ XClosed(Loc)

• close : X −→ XOpen(Loc)

• But we should be able to distinguish between
computations able to use different locations

• We could take inspiration from the algebra for local state
• work in the category SetW

• However, we don’t yet know what the appropriate
non-discrete world category and the corresponding
(monoidal) closed structure should be

Refining global state
• So we should also add operations for opening and closing

locations

• lookup : XV −→ XOpen(Loc)

• update : X −→ XOpen(Loc)×V

• open : X −→ XClosed(Loc)

• close : X −→ XOpen(Loc)

• But we should be able to distinguish between
computations able to use different locations

• We could take inspiration from the algebra for local state
• work in the category SetW

• However, we don’t yet know what the appropriate
non-discrete world category and the corresponding
(monoidal) closed structure should be

Refining global state (W-sorted theories)

• We don’t know the definition in a single sorted theory

• So let’s try to work in W-sorted algebraic theories

• A W-sorted algebraic theory consists of:

• a set of sorts W (we think of them as worlds)

• a small category L with countable products

• an id. on objects countable-product preserving functor

J : W ∗ −→ L
• (where W ∗ has as objects words w0, ...,wn over W)

• A model of a W-sorted theory is given by
• a countable product preserving functor M : L −→ Set

• The forgetful functor U : Mod(L, Set) −→ SetW again
has a left adjoint F inducing a monad T = UF

Refining global state (W-sorted theories)

• We don’t know the definition in a single sorted theory

• So let’s try to work in W-sorted algebraic theories

• A W-sorted algebraic theory consists of:

• a set of sorts W (we think of them as worlds)

• a small category L with countable products

• an id. on objects countable-product preserving functor

J : W ∗ −→ L
• (where W ∗ has as objects words w0, ...,wn over W)

• A model of a W-sorted theory is given by
• a countable product preserving functor M : L −→ Set

• The forgetful functor U : Mod(L, Set) −→ SetW again
has a left adjoint F inducing a monad T = UF

Refining global state (W-sorted theories)

• We don’t know the definition in a single sorted theory

• So let’s try to work in W-sorted algebraic theories

• A W-sorted algebraic theory consists of:

• a set of sorts W (we think of them as worlds)

• a small category L with countable products

• an id. on objects countable-product preserving functor

J : W ∗ −→ L
• (where W ∗ has as objects words w0, ...,wn over W)

• A model of a W-sorted theory is given by
• a countable product preserving functor M : L −→ Set

• The forgetful functor U : Mod(L, Set) −→ SetW again
has a left adjoint F inducing a monad T = UF

Refining global state (W-sorted theories)

• We don’t know the definition in a single sorted theory

• So let’s try to work in W-sorted algebraic theories

• A W-sorted algebraic theory consists of:

• a set of sorts W (we think of them as worlds)

• a small category L with countable products

• an id. on objects countable-product preserving functor

J : W ∗ −→ L
• (where W ∗ has as objects words w0, ...,wn over W)

• A model of a W-sorted theory is given by
• a countable product preserving functor M : L −→ Set

• The forgetful functor U : Mod(L, Set) −→ SetW again
has a left adjoint F inducing a monad T = UF

Refining global state (W-sorted theories)

• Let the worlds be W = BoolW

• We have families of operations in the theory
• lookupw∈W ,loc∈Openw (Loc) : w ,,w −→ w

• updatew∈W ,loc∈Openw (Loc),v∈V : w −→ w

• openw∈W ,loc∈Openw (Loc) : w −→ w [loc 7→ ⊥]

• closew∈W ,loc∈Closedw (Loc) : w −→ w [loc 7→ >]

• satisfying appropriate commuting diagrams

• Giving us the algebra
• lookupw∈W ,loc∈Openw (Loc) : (XV)w −→ Xw

• updatew∈W ,loc∈Openw (Loc),v∈V : Xw −→ Xw

• openw∈W ,loc∈Openw (Loc) : Xw −→ Xw [loc 7→⊥]

• closew∈W ,loc∈Closedw (Loc) : Xw −→ Xw [loc 7→>]

Refining global state (W-sorted theories)

• Let the worlds be W = BoolW

• We have families of operations in the theory
• lookupw∈W ,loc∈Openw (Loc) : w ,,w −→ w

• updatew∈W ,loc∈Openw (Loc),v∈V : w −→ w

• openw∈W ,loc∈Openw (Loc) : w −→ w [loc 7→ ⊥]

• closew∈W ,loc∈Closedw (Loc) : w −→ w [loc 7→ >]

• satisfying appropriate commuting diagrams

• Giving us the algebra
• lookupw∈W ,loc∈Openw (Loc) : (XV)w −→ Xw

• updatew∈W ,loc∈Openw (Loc),v∈V : Xw −→ Xw

• openw∈W ,loc∈Openw (Loc) : Xw −→ Xw [loc 7→⊥]

• closew∈W ,loc∈Closedw (Loc) : Xw −→ Xw [loc 7→>]

Refining global state (W-sorted theories)
• So we have the algebra

• lookupw∈W ,loc∈Openw (Loc) : (XV)w −→ Xw

• updatew∈W ,loc∈Openw (Loc),v∈V : Xw −→ Xw

• openw∈W ,loc∈Openw (Loc) : Xw −→ Xw [loc 7→⊥]

• closew∈W ,loc∈Closedw (Loc) : Xw −→ Xw [loc 7→>]

• Inducing monad TXw = UFXw = (
∑

w ′∈W (Sw ′ × Xw ′))Sw

• With the unit ηx : X −→ UFX of the adjunction given by:
ηx ,w γ = λs . injw (s , γ)

• And the counit εA : FUA −→ A of the adjunction:

εA,w = (
∐

(S × Aw ′))S
(
∐

(S×
−−→
close))S−→ (

∐
(S × Aw>))S

∼=−→

(S × Aw>)S
(
−−→
write)S−→ (Aw>)S

−−→
read−→ Aw>

−−→open−→ Aw

• And the Kleisli extension is given by (−)∗ = UεF

Refining global state (W-sorted theories)
• So we have the algebra

• lookupw∈W ,loc∈Openw (Loc) : (XV)w −→ Xw

• updatew∈W ,loc∈Openw (Loc),v∈V : Xw −→ Xw

• openw∈W ,loc∈Openw (Loc) : Xw −→ Xw [loc 7→⊥]

• closew∈W ,loc∈Closedw (Loc) : Xw −→ Xw [loc 7→>]

• Inducing monad TXw = UFXw = (
∑

w ′∈W (Sw ′ × Xw ′))Sw

• With the unit ηx : X −→ UFX of the adjunction given by:
ηx ,w γ = λs . injw (s , γ)

• And the counit εA : FUA −→ A of the adjunction:

εA,w = (
∐

(S × Aw ′))S
(
∐

(S×
−−→
close))S−→ (

∐
(S × Aw>))S

∼=−→

(S × Aw>)S
(
−−→
write)S−→ (Aw>)S

−−→
read−→ Aw>

−−→open−→ Aw

• And the Kleisli extension is given by (−)∗ = UεF

Refining global state (W-sorted theories)
• So we have the algebra

• lookupw∈W ,loc∈Openw (Loc) : (XV)w −→ Xw

• updatew∈W ,loc∈Openw (Loc),v∈V : Xw −→ Xw

• openw∈W ,loc∈Openw (Loc) : Xw −→ Xw [loc 7→⊥]

• closew∈W ,loc∈Closedw (Loc) : Xw −→ Xw [loc 7→>]

• Inducing monad TXw = UFXw = (
∑

w ′∈W (Sw ′ × Xw ′))Sw

• With the unit ηx : X −→ UFX of the adjunction given by:
ηx ,w γ = λs . injw (s , γ)

• And the counit εA : FUA −→ A of the adjunction:

εA,w = (
∐

(S × Aw ′))S
(
∐

(S×
−−→
close))S−→ (

∐
(S × Aw>))S

∼=−→

(S × Aw>)S
(
−−→
write)S−→ (Aw>)S

−−→
read−→ Aw>

−−→open−→ Aw

• And the Kleisli extension is given by (−)∗ = UεF

Another example of a straightforward theory

• Inspiration from McBride’s work on file operations

• Take the simple set of worlds W = Bool

• We are interested in axiomatizing logging in to and
logging off from some system

• We have the theory
• LogInp∈Password : true, false −→ false

• DoSomething : true −→ true

• LogOut : false −→ true

• And the algebra
• LogInp∈Password : Xtrue × Xfalse −→ Xfalse

• DoSomething : Xtrue −→ Xtrue

• LogOut : Xfalse −→ Xtrue

• However, LogIn not captured by Atkey’s parametrized
monads as the arguments live in different worlds!

Another example of a straightforward theory

• Inspiration from McBride’s work on file operations

• Take the simple set of worlds W = Bool

• We are interested in axiomatizing logging in to and
logging off from some system

• We have the theory
• LogInp∈Password : true, false −→ false

• DoSomething : true −→ true

• LogOut : false −→ true

• And the algebra
• LogInp∈Password : Xtrue × Xfalse −→ Xfalse

• DoSomething : Xtrue −→ Xtrue

• LogOut : Xfalse −→ Xtrue

• However, LogIn not captured by Atkey’s parametrized
monads as the arguments live in different worlds!

What next?

• The W-sorted approach gave us the monad we were after
• Can we make it work naturally in the singlesorted case?

• Idea, try to give more general form to the operations
in the algebra

• opw :
∏

o∈Ow

Xδo(w ,o) −→
∏
i∈Iw

Xδi (w ,i)

and in the theory

• opw :
∐

o∈Ow

{δo(w , o)} −→
∐
i∈Iw

{δi (w , i)}

• But can’t always define them uniformly in w, e.g.:

lookup[li 7→⊥] :
∐
v∈V

{[li 7→ ⊥]} −→ 0

• Seems to be kind of inherent to the idea that not all
operations should be definable in all worlds

What next?

• The W-sorted approach gave us the monad we were after
• Can we make it work naturally in the singlesorted case?

• Idea, try to give more general form to the operations
in the algebra

• opw :
∏

o∈Ow

Xδo(w ,o) −→
∏
i∈Iw

Xδi (w ,i)

and in the theory

• opw :
∐

o∈Ow

{δo(w , o)} −→
∐
i∈Iw

{δi (w , i)}

• But can’t always define them uniformly in w, e.g.:

lookup[li 7→⊥] :
∐
v∈V

{[li 7→ ⊥]} −→ 0

• Seems to be kind of inherent to the idea that not all
operations should be definable in all worlds

What next?

• The W-sorted approach gave us the monad we were after
• Can we make it work naturally in the singlesorted case?

• Idea, try to give more general form to the operations
in the algebra

• opw :
∏

o∈Ow

Xδo(w ,o) −→
∏
i∈Iw

Xδi (w ,i)

and in the theory

• opw :
∐

o∈Ow

{δo(w , o)} −→
∐
i∈Iw

{δi (w , i)}

• But can’t always define them uniformly in w, e.g.:

lookup[li 7→⊥] :
∐
v∈V

{[li 7→ ⊥]} −→ 0

• Seems to be kind of inherent to the idea that not all
operations should be definable in all worlds

Questions?

