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▸ Execution of algebraic operation calls has three distinct phases

▸ Idea: Decouple all three phases into separate programming constructs, so that

▸ M would not block while (2) happens asynchronously, 

▸ programmers could choose if/when to block M for (3) to happen, and

▸ (3) could happen without originating from (1)                                (and vice versa)

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .

↑ ↓
M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W
(1)

(2)

(3)
signalling to execute 
some impl. of op

executing op's impl.

interrupting M's blocking



THE APPROACH



THE SIGNALS



THE SIGNALS

▸ Our computations can issue outgoing signals  
 



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

signal name



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

payload

signal name



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

payload

continuation

signal name



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

𝗅𝖾𝗍 x = (↑ 𝗈𝗉 (V, M) ) 𝗂𝗇 N
⇝ ↑ 𝗈𝗉 (V, (𝗅𝖾𝗍 x = M 𝗂𝗇 N))



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (cachedSize + 1, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)



THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation)                           (just like algebraic operations)

▸ do not block their continuation                                 (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (cachedSize + 1, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ↑ 𝖽𝗂𝗌𝗉𝗅𝖺𝗒 (message, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)



THE INTERRUPTS



THE INTERRUPTS

▸ Our computations can be interrupted  
 



THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

interrupt name



THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

payload

interrupt name



THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

payload

continuation

interrupt name



THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗈𝗉 (W, ↑ 𝗈𝗉′� (V, M))
⇝ ↑ 𝗈𝗉′� (V, ↓ 𝗈𝗉 (W, M))



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗈𝗉 (W, ↑ 𝗈𝗉′� (V, M))
⇝ ↑ 𝗈𝗉′� (V, ↓ 𝗈𝗉 (W, M))

↓ 𝗈𝗉 (W, 𝗋𝖾𝗍𝗎𝗋𝗇 V)
⇝ 𝗋𝖾𝗍𝗎𝗋𝗇 V



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W

. . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W

. . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M). . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M) ⇝ . . .



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 (newBatch, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)



THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation)                                        (just like effect handling)

▸ do not block their continuation                                         (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed          (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 (newBatch, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ↓ 𝗇𝖾𝗑𝗍𝖨𝗍𝖾𝗆 ((), M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

(propagate)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

(propagate)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 ( ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋) ))

(propagate)

(broadcast)

(propagate)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

▸ But interrupts can also appear spontaneously!

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 ( ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋) ))

(propagate)

(broadcast)

(propagate)



THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

▸ But interrupts can also appear spontaneously!

▸ e.g.   the user clicking a button   or   the environment preempting a process

𝗋𝗎𝗇 ( ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 ( ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋) ))

(propagate)

(broadcast)

(propagate)



THE INTERRUPT HANDLERS



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name

handler code



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name

continuation

handler code



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

𝗅𝖾𝗍 y = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗅𝖾𝗍 p = M[V/x] 𝗂𝗇 ↓ 𝗈𝗉 (V, N)



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉′� x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉′� x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

(𝗈𝗉 ≠ 𝗈𝗉′�)



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation                              

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation                              

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation                              

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation                              

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms

𝑝 has promise type ⟨𝑋⟩ 



THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards                                                  (just like algebraic operations)

▸ triggered by matching interrupts         (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation                              

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms

𝑝 has promise type ⟨𝑋⟩ 

promise types ensure type safety!



THE AWAITING



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N

promise-typed value



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N

promise-typed value

continuation



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝖺𝗐𝖺𝗂𝗍 ⟨V⟩ 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
⇝ N[V/x]



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
⇝



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

Example: client blocks until server sends its batch size



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls                          as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls                          as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

↑ 𝗈𝗉-𝗌𝗂𝗀 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉-𝗂𝗇𝗍 x ↦ 𝗋𝖾𝗍𝗎𝗋𝗇 ⟨x⟩) 𝖺𝗌 p 𝗂𝗇 (𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 M))
𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls                          as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls                          as

▸ and the implementations of op in parallel processes as follows

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size



THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls                          as

▸ and the implementations of op in parallel processes as follows

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉-𝗌𝗂𝗀 x ↦ ⟨M𝗈𝗉⟩) 𝖺𝗌 p 𝗂𝗇 (𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 ↑ 𝗈𝗉-𝗂𝗇𝗍 (y, 𝗋𝖾𝗍𝗎𝗋𝗇 ()))

Example: client blocks until server sends its batch size



THE RUNNING EXAMPLE



THE RUNNING EXAMPLE



THE RUNNING EXAMPLE

* request server's settings,  

* install int. handler for the response, and 

* block until they arrive (but only after useful work)
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client's main loop is a rec. defined int. handler 
 * reacts to next item interrupts from user 
 * issues display signals or new data requests



THE RUNNING EXAMPLE



| |

THE RUNNING EXAMPLE



| |

THE RUNNING EXAMPLE server processes are commonly rec. defined int. handlers



| |

THE RUNNING EXAMPLE



| |

THE RUNNING EXAMPLE

| |



| |

THE RUNNING EXAMPLE

| |



| |

| |
          10 11 12 13 14 

         please wait  
               a  bit

THE RUNNING EXAMPLE

| |



| |

| |
          10 11 12 13 14 

         please wait  
               a  bit

THE RUNNING EXAMPLE

| |



THE CALCULUS



THE 𝜆æ-CALCULUS



THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus                            [Levy et al. '03] 

▸ values 

▸ computations 

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)



THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus                            [Levy et al. '03] 

▸ values 

▸ computations 

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)



THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus                            [Levy et al. '03] 

▸ values 

▸ computations 

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)

a fulfilled promise



THE TYPES



▸ Typing judgements

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫



▸ Typing judgements

▸ Value types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩



▸ Typing judgements

▸ Value types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩
promise type



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

promise type



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

promise type

used to type payloads of signals & interrupts



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values
possible issued signals    
                 o ⊆ Σ 



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
       ι  =  { ...  ,  opi → ( oi , ιi )  ,  ... }

possible issued signals    
                 o ⊆ Σ 



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

▸ Process types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

𝒫, 𝒬 ::= X !! (o, ι) | 𝒫 | | 𝒬

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
       ι  =  { ...  ,  opi → ( oi , ιi )  ,  ... }

possible issued signals    
                 o ⊆ Σ 



▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

▸ Process types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

𝒫, 𝒬 ::= X !! (o, ι) | 𝒫 | | 𝒬

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
       ι  =  { ...  ,  opi → ( oi , ιi )  ,  ... }

possible issued signals    
                 o ⊆ Σ 

match the structure of processes



THE TYPING RULES



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)
op is allowed to happen



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)
op is allowed to happen

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

𝗈𝗉 ↓ (o, ι) = {(o ∪ o′�, ι[𝗈𝗉 ↦ ⊥] ∪ ι′�) if  ι (𝗈𝗉) = (o′�, ι′�)
(o, ι) otherwise

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

effects of op's handlers

payload value matches op's signature    op : Aop



THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

effects of op's handlers

promise-typed
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▸ Small-step reduction semantics

▸ standard reduction rules from the fine-grain call-by-value 𝜆-calculus

▸ reduction rules we have already seen

▸ commutativity of signals with int. handlers          (makes type safety interesting)

▸ evaluation context rules

M ⇝ N P ⇝ Q
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* blocked awaits  
     or 
   return values
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* parallel compositions 

* individual computation result forms (w/o signals)
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where
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▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

▸ Denotational semantics based on monads for scoped effects        [Piróg et al. ‘18]

▸ Using the effect system for effect-dependent optimisations 

▸ Refine the "broadcast everything everywhere" communication strategy

▸ In depth comparison with message-passing concurrency frameworks
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▸ Agda formalisation of 𝜆æ and prototype implementation Æff
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