

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0326.

DANEL AHMAN MATIJA PRETNAR UNIVERSITY OF LJUBLJANA, SLOVENIA 07.01.2021AJYNUHKUNUUJ EFFELIJ

Effectful programming with algebraic effects and effect handlers

Effectful programming with algebraic effects and effect handlers

$M, N ::= \dots$ | op $(V, y \cdot M)$ | handle M with H

$H ::= \{ \ldots, \operatorname{op}_{i} x k \mapsto M_{\operatorname{op}_{i}}, \ldots, \operatorname{return} x \mapsto N_{\operatorname{ret}} \}$

Effectful programming with algebraic effects and effect handlers

- $M, N := \dots$ Op(V, y.M) handle M with H
 - $H ::= \{ \ldots, \operatorname{op}_{i} x k \mapsto M_{\operatorname{op}_{i}}, \ldots, \operatorname{return} x \mapsto N_{\operatorname{ret}} \}$

Separates (operation-based) interfaces from (user-definable) implementations

Effectful programming with algebraic effects and effect handlers

- $M, N ::= \dots$ | op $(V, y \cdot M)$ | handle M with H
 - $H ::= \{ \ldots, \operatorname{op}_{i} x k \mapsto M_{\operatorname{op}_{i}}, \ldots, \operatorname{return} x \mapsto N_{\operatorname{ret}} \}$

handle (return V) with $H \rightarrow N_{ret}[V/x]$

- Separates (operation-based) interfaces from (user-definable) implementations

 - handle (op (V, y. M)) with $H \rightsquigarrow M_{op}[V/x, (fun y \mapsto handle M with H)/k]$

Effectful programming with algebraic effects and effect handlers

- $M, N ::= \dots$ | op $(V, y \cdot M)$ | handle M with H
 - $H ::= \{ \ldots, \operatorname{op}_{i} x k \mapsto M_{\operatorname{op}_{i}}, \ldots, \operatorname{return} x \mapsto N_{\operatorname{ret}} \}$

handle (return V) with $H \rightarrow N_{ret}[V/x]$

State, rollbacks, exceptions, non-determ., concurrency, prob. programming, ...

- Separates (operation-based) interfaces from (user-definable) implementations

handle (op (V, y. M)) with $H \rightsquigarrow M_{op}[V/x, (fun y \mapsto handle M with H)/k]$

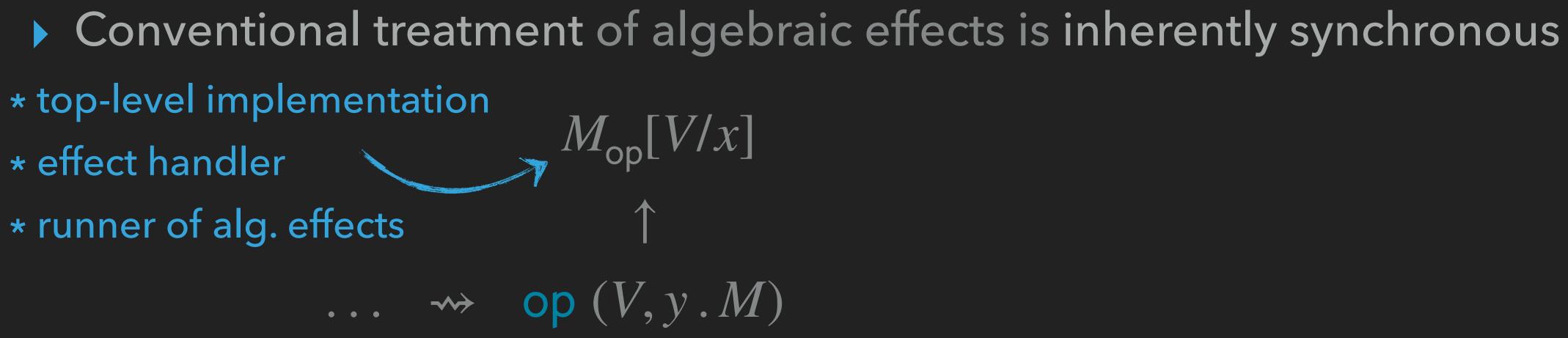
Conventional treatment of algebraic effects is inherently synchronous

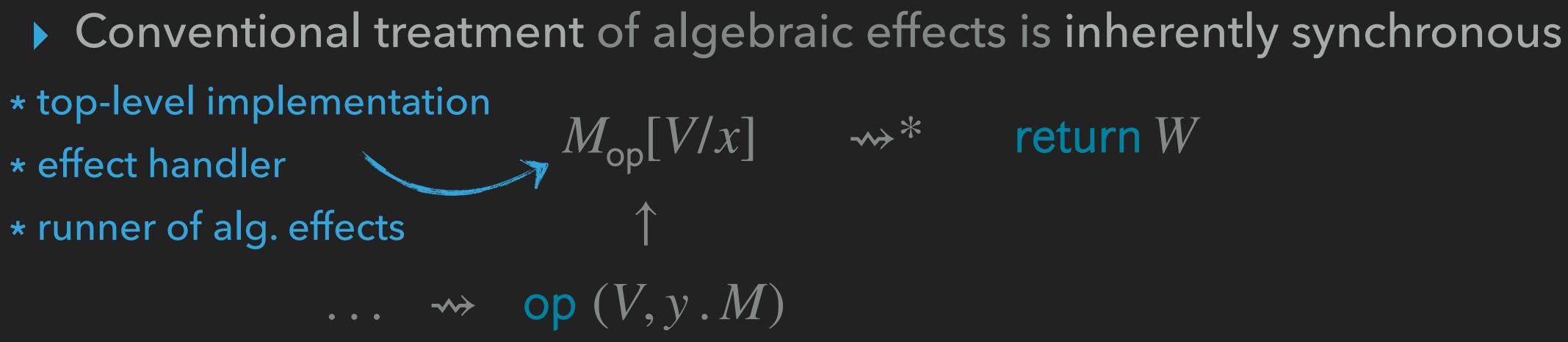
Conventional treatment of algebraic effects is inherently synchronous

$\dots \rightsquigarrow \operatorname{op}(V, y.M)$

Conventional treatment of algebraic effects is inherently synchronous

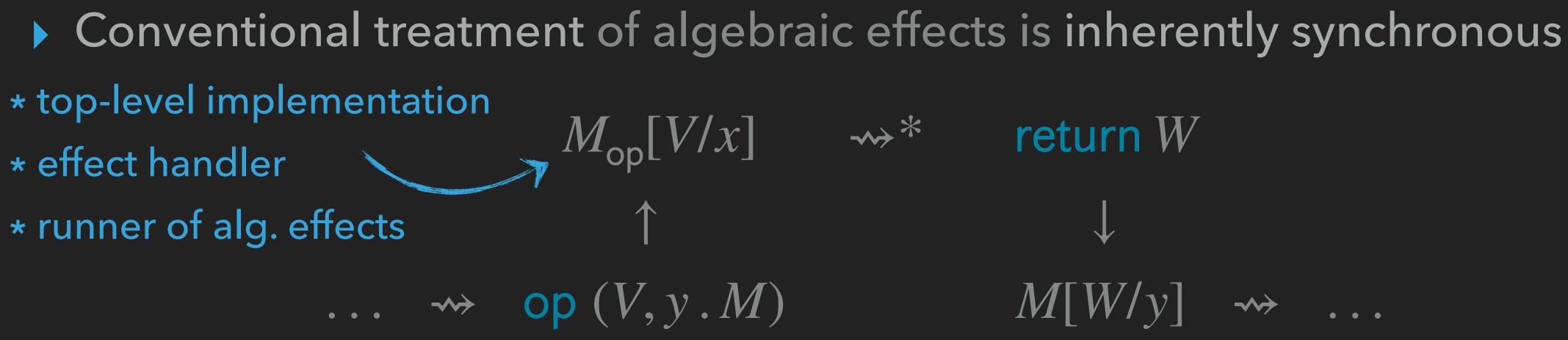
 $M_{op}[V/x]$ \uparrow $\ldots \implies \operatorname{op}(V, y.M)$



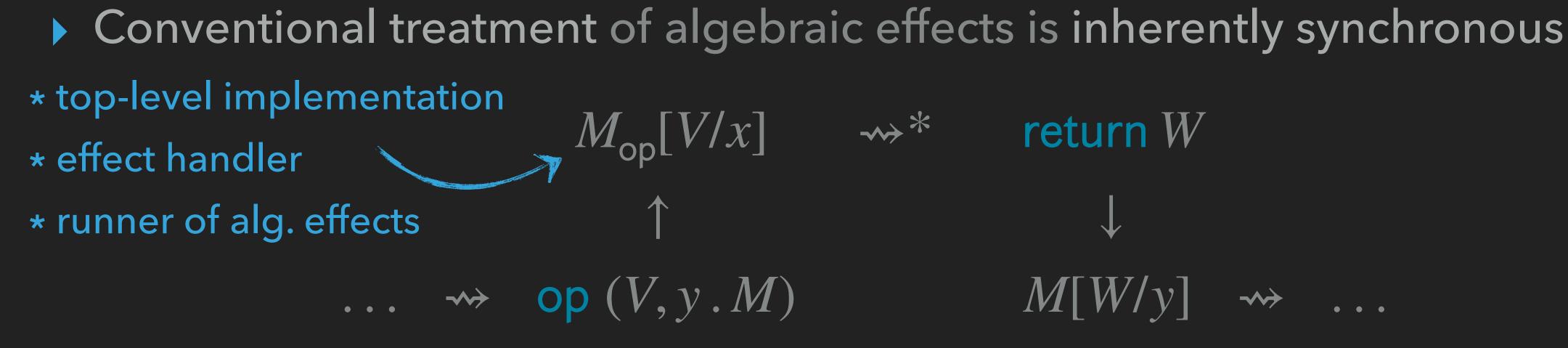


Conventional treatment of algebraic effects is inherently synchronous * top-level implementation $M_{op}[V/x] \longrightarrow * return W$ \uparrow * effect handler * runner of alg. effects $\dots \rightsquigarrow \operatorname{op}(V, y.M)$

continuation is blocked until W is computed



M[W/y]-^> ...



- $M[W/y] \rightsquigarrow \ldots$
- Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)

- Conventional treatment of algebraic effects is inherently synchronous * effect handler $M_{op}[V/x] \rightarrow *$ return W * runner of alg. effects * top-level implementation $\dots \rightsquigarrow op(V, y.M)$ $M[W/y] \rightsquigarrow \ldots$
 - Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)
 - But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

- Conventional treatment of algebraic effects is inherently synchronous * top-level implementation * effect handler $M_{op}[V/x] \rightarrow *$ return W * runner of alg. effects \uparrow $\dots \rightsquigarrow \operatorname{op}(V, y.M) \qquad M[W/y] \rightsquigarrow \dots$
 - Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)
 - But it forces all uses of alg. effs. to be synchronous, even if this is not necessary
 - Existing approaches to asynchrony simply delegate it to language backends

- Conventional treatment of algebraic effects is inherently synchronous * top-level implementation * effect handler $M_{op}[V/x] \rightarrow *$ return W * runner of alg. effects \uparrow $\dots \rightsquigarrow \operatorname{op}(V, y.M) \qquad M[W/y] \rightsquigarrow \dots$
 - Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)
 - But it forces all uses of alg. effs. to be synchronous, even if this is not necessary
 - Existing approaches to asynchrony simply delegate it to language backends

Koka [Leijen '17], Multicore OCaml [Dolan et al. '18]

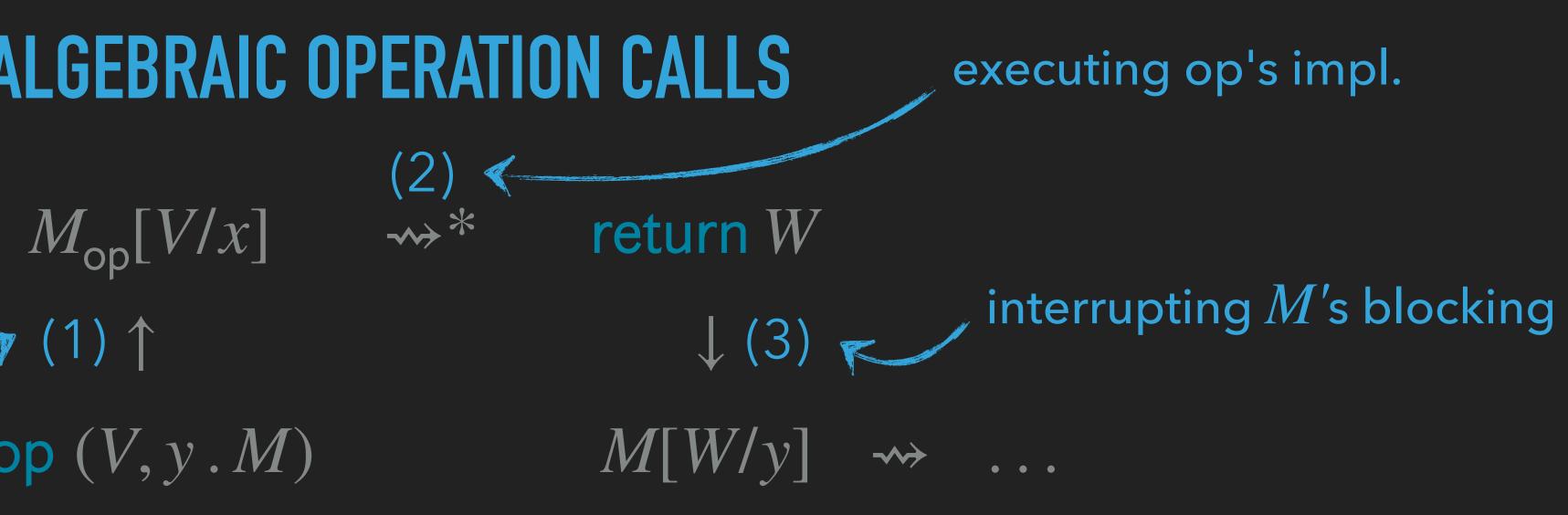
- Conventional treatment of algebraic effects is inherently synchronous * top-level implementation * effect handler $M_{op}[V/x] \rightarrow *$ return W * runner of alg. effects \uparrow $\dots \rightsquigarrow \operatorname{op}(V, y.M) \qquad M[W/y] \rightsquigarrow \dots$
 - Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)
 - But it forces all uses of alg. effs. to be synchronous, even if this is not necessary
 - Existing approaches to asynchrony simply delegate it to language backends

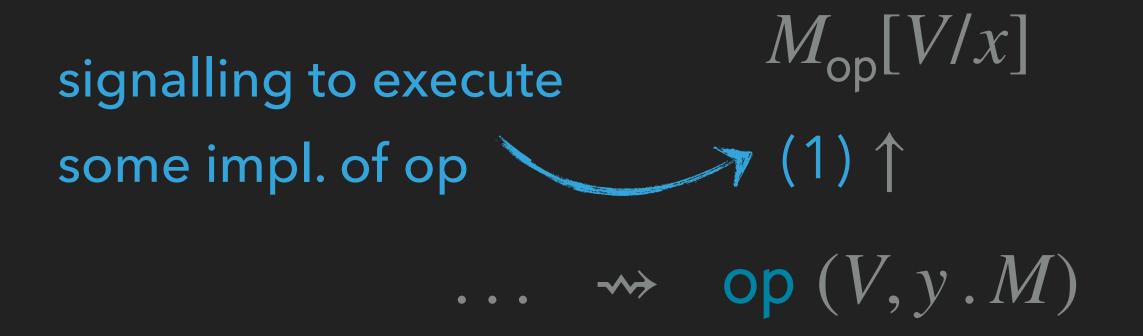
- Conventional treatment of algebraic effects is inherently synchronous * top-level implementation * effect handler $M_{op}[V/x] \rightarrow *$ return W * runner of alg. effects \uparrow $\dots \rightsquigarrow \operatorname{op}(V, y.M) \qquad M[W/y] \rightsquigarrow \dots$
 - Blocking needed in the presence of (non-linear) general effect handlers, and to avoid having to reduce open terms (y is bound immediately)
 - But it forces all uses of alg. effs. to be synchronous, even if this is not necessary
 - Existing approaches to asynchrony simply delegate it to language backends
 - This paper: How to capture asynchrony in a self-contained core language?

 $M_{op}[V/x] \longrightarrow *$ return W \uparrow $\dots \implies \mathsf{op}(V, y.M) \qquad M[W/y] \implies \dots$

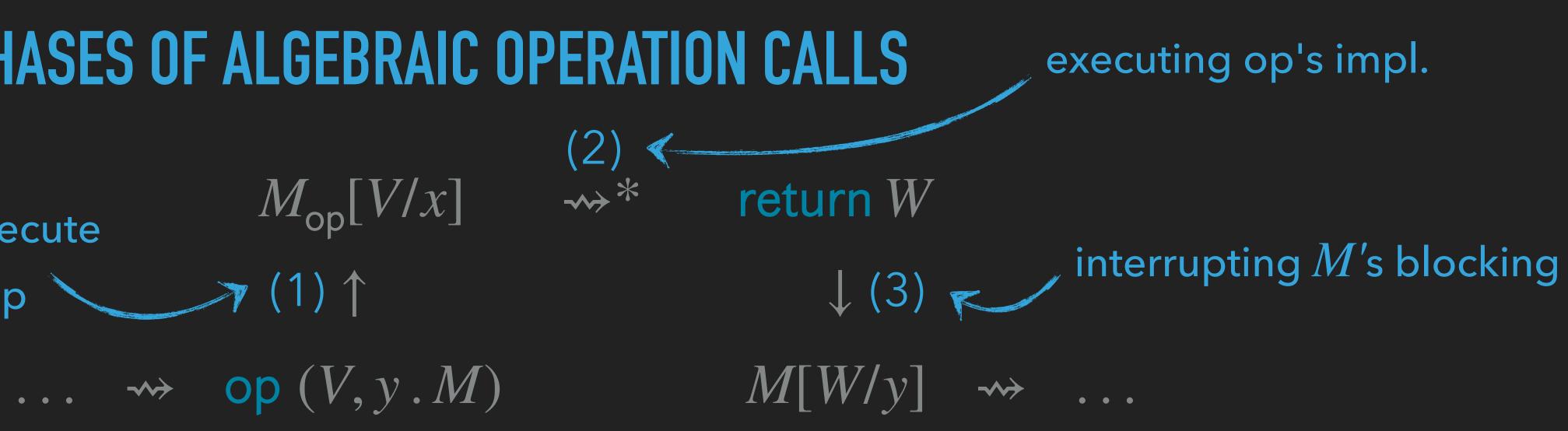
 \downarrow

Execution of algebraic operation calls has three distinct phases



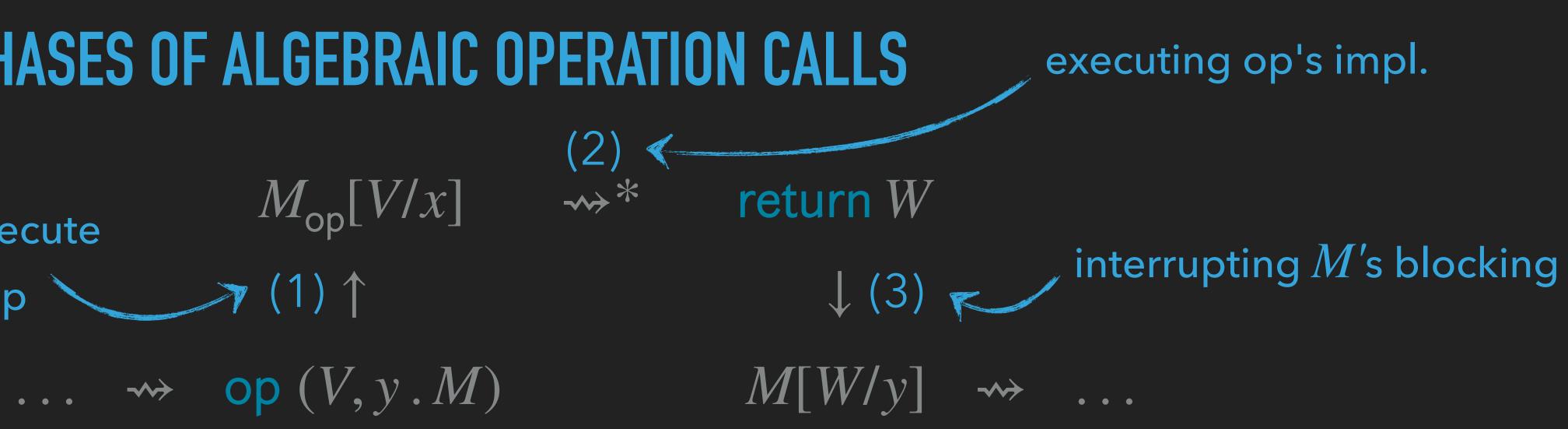


Execution of algebraic operation calls has three distinct phases



- Idea: Decouple all three phases into separate programming constructs, so that

- Execution of algebraic operation calls has three distinct phases
- Idea: Decouple all three phases into separate programming constructs, so that
 - M would not block while (2) happens asynchronously,
 - \triangleright programmers could choose if/when to block M for (3) to happen, and
 - (3) could happen without originating from (1)



THE APPROACH

Our computations can issue outgoing signals

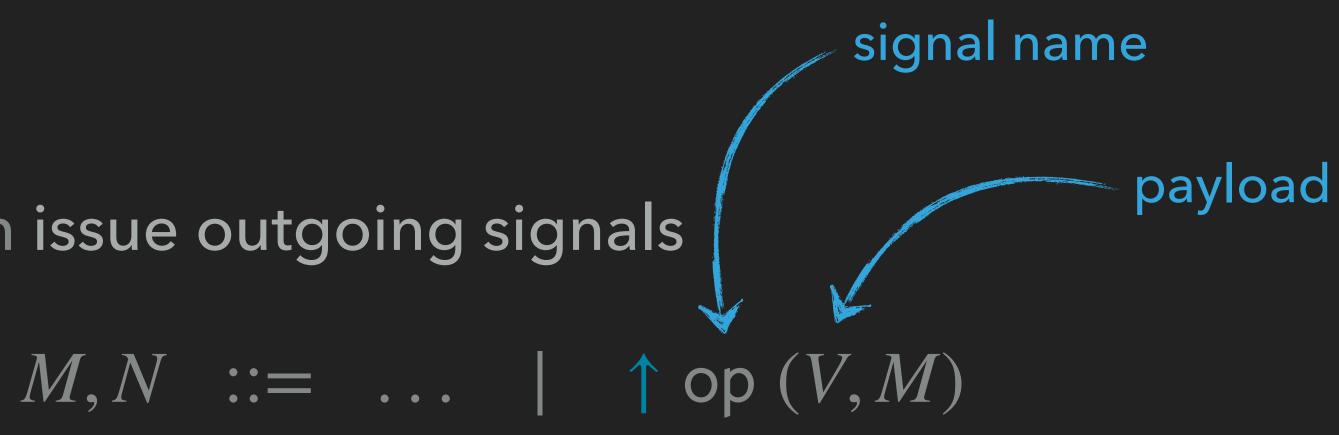
Our computations can issue outgoing signals

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$

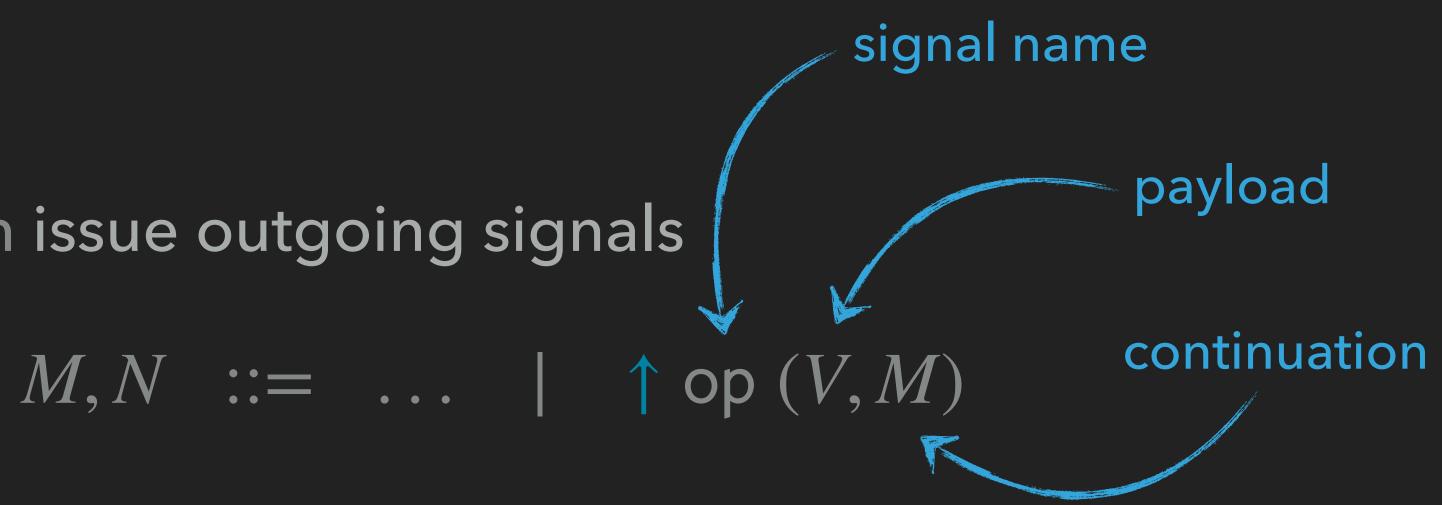
Our computations can issue outgoing signals

signal name $M, N ::= \dots | \uparrow \operatorname{op} (V, M)$

Our computations can issue outgoing signals



Our computations can issue outgoing signals



Our computations can issue outgoing signals

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$

- Our computations can issue outgoing signals

 - propagate outwards (1-notation)

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$

(just like <u>algebraic operations</u>)

- Our computations can issue outgoing signals $M, N ::= \dots | \uparrow \operatorname{op} (V, M)$
 - propagate outwards (1-notation) $let x = (\uparrow op (V, M)) in N$ \rightarrow \uparrow op (V, (let x = M in N))

(just like <u>algebraic operations</u>)

- Our computations can issue outgoing signals

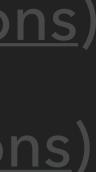
 - propagate outwards (1-notation)

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$

(just like <u>algebraic operations</u>)

- Our computations can issue outgoing signals
 - propagate outwards (1-notation)
 - do not block their continuation

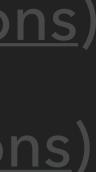
$M, N ::= \dots$ \uparrow op (V, M)



- Our computations can issue outgoing signals
 - propagate outwards (1-notation)
 - do not block their continuation

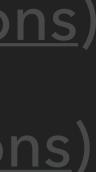
$\dots \rightsquigarrow \uparrow \operatorname{op}(V, M)$

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$



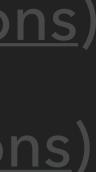
- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V
 - $\dots \rightsquigarrow \uparrow \operatorname{op}(V, M)$

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$



- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V
 - $\dots \rightsquigarrow \uparrow \operatorname{op}(V, M) \rightsquigarrow M$

$M, N ::= \dots$ | \uparrow op (V, M)

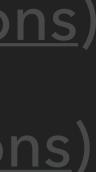


- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V

$M, N ::= \dots$ | $\uparrow \operatorname{op}(V, M)$

(just like <u>algebraic operations</u>) (unlike <u>algebraic operations</u>)

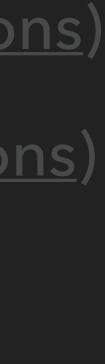
 $\dots \twoheadrightarrow \uparrow \operatorname{op}(V, M) \twoheadrightarrow M \twoheadrightarrow \dots$



- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V $\dots \rightsquigarrow \uparrow \operatorname{op}(V, M) \rightsquigarrow M \rightsquigarrow \dots$
- Example: scrolling through a seemingly infinite feed

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$ (just like <u>algebraic operations</u>) (unlike <u>algebraic operations</u>)

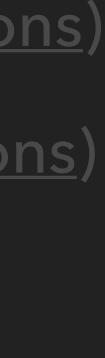
(user & client & server)



- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V $\dots \rightsquigarrow \uparrow \operatorname{op}(V, M) \rightsquigarrow M \rightsquigarrow \dots$
- Example: scrolling through a seemingly infinite feed \uparrow request (*cachedSize* + 1, M_{feedClient})

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$ (just like <u>algebraic operations</u>) (unlike <u>algebraic operations</u>)

(user & client & server)



- Our computations can issue outgoing signals
 - propagate outwards (1-notation) do not block their continuation op V
- Example: scrolling through a seemingly infinite feed \uparrow request (*cachedSize* + 1, M_{feedClient})

$M, N ::= \dots | \uparrow \operatorname{op} (V, M)$ (just like <u>algebraic operations</u>) (unlike <u>algebraic operations</u>) $\dots \rightsquigarrow \uparrow \operatorname{op}(V, M) \rightsquigarrow M \rightsquigarrow \dots$

(user & client & server) \uparrow display (message, M_{feedClient})

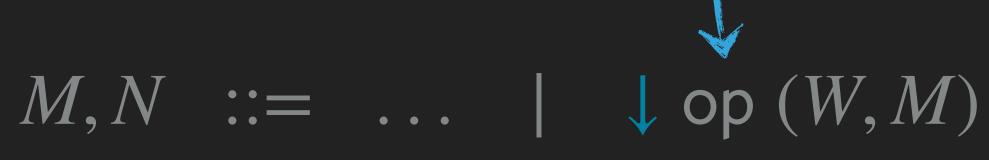
Our computations can be interrupted

Our computations can be interrupted

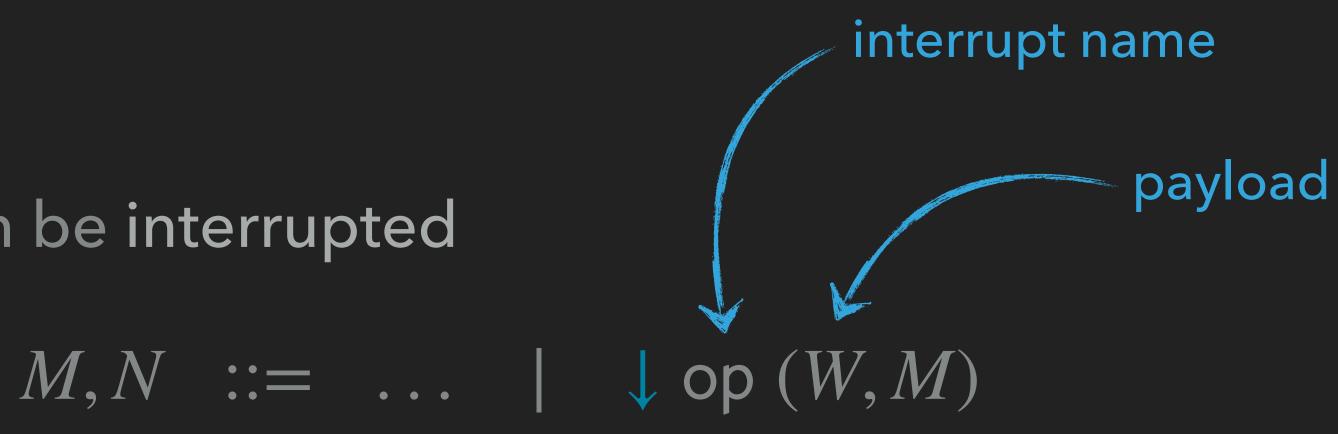
$M, N ::= \dots | \downarrow \operatorname{op} (W, M)$

Our computations can be interrupted

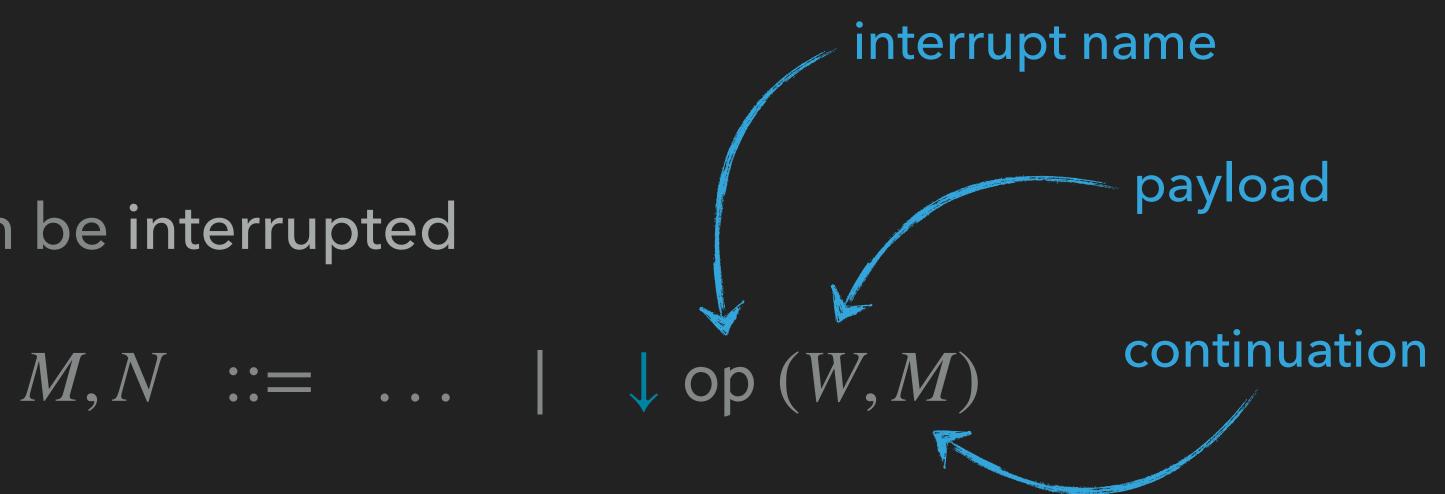
interrupt name



Our computations can be interrupted



Our computations can be interrupted



Our computations can be interrupted

$M, N ::= \dots | \downarrow \operatorname{op} (W, M)$

Our computations can be interrupted

propagate inwards (1-notation)

$M, N ::= \dots | \downarrow \operatorname{op} (W, M)$

(just like <u>effect handling</u>)

- Our computations can be interrupted
 - propagate inwards (1-notation)

$M, N ::= \dots | \downarrow \operatorname{op} (W, M)$

(just like <u>effect handling</u>)

 $\downarrow \operatorname{op}(W, \uparrow \operatorname{op}'(V, M))$ \Rightarrow \uparrow op' $(V, \downarrow$ op(W, M))

- Our computations can be interrupted
 - propagate inwards (1-notation)

- return V \rightarrow

$M, N ::= \dots$ | $\downarrow \text{op}(W, M)$

(just like <u>effect handling</u>)

$\downarrow \operatorname{op}(W, \uparrow \operatorname{op}'(V, M))$ \rightarrow \uparrow op' $(V, \downarrow$ op (W, M))

\downarrow op (W, return V)

Our computations can be interrupted

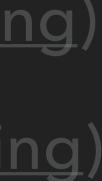
propagate inwards (1-notation)

$M, N ::= \dots | \downarrow \operatorname{op} (W, M)$

(just like <u>effect handling</u>)

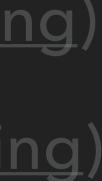
- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation

$M, N ::= \dots | \downarrow op (W, M)$



- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

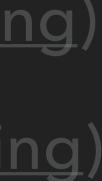
$M, N ::= \dots | \downarrow op (W, \overline{M})$



- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

$$\dots \longrightarrow M$$

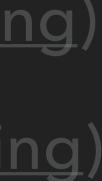
$M, N ::= \dots | \downarrow op (W, \overline{M})$



- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

 \bigvee op W

$M, N ::= \dots | \downarrow \operatorname{op} (W, \overline{M})$



- Our computations can be interrupted
 - propagate inwards (-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

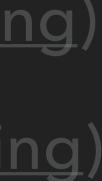
 $\int \mathsf{op} W$

$M, N ::= \dots | \downarrow op (W, \overline{M})$

(just like <u>effect handling</u>)

(just like <u>effect handling</u>)

 $\dots \rightsquigarrow M \rightsquigarrow \downarrow \operatorname{op}(W, M)$



- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

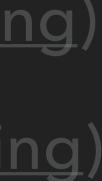
 $\int \mathsf{op} W$

$M, N ::= \dots | \downarrow op (W, \overline{M})$

(just like <u>effect handling</u>)

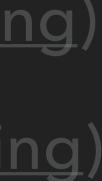
(just like <u>effect handling</u>)

 $\dots \twoheadrightarrow M \twoheadrightarrow \bigvee \operatorname{op}(W, M) \twoheadrightarrow \dots$



- Our computations can be interrupted
 - propagate inwards (1-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

$M, N ::= \dots | \downarrow op (W, \overline{M})$



- Our computations can be interrupted
 - propagate inwards (-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

Example: scrolling through a seemingly infinite feed

$M, N ::= \dots$ | \downarrow op (W, M)

(just like <u>effect handling</u>)

(just like <u>effect handling</u>)

(user & client & server)

- Our computations can be interrupted
 - propagate inwards (-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

- Example: scrolling through a seemingly infinite feed
 - \downarrow response (*newBatch*, M_{feedClient})

$M, N ::= \dots$ | $\downarrow \text{op}(W, M)$

(just like <u>effect handling</u>)

(just like <u>effect handling</u>)

(user & client & server)

- Our computations can be interrupted
 - propagate inwards (-notation)
 - do not block their continuation
 - can interrupt any sequence of reduction steps

- Example: scrolling through a seemingly infinite feed
 - \downarrow response (*newBatch*, $M_{\text{feedClient}}$)

$M, N ::= \dots | \downarrow op (W, M)$

(just like <u>effect handling</u>)

(just like <u>effect handling</u>)

(user & client & server)

 \downarrow nextItem ((), $M_{\text{feedClient}}$)

Programmers are not expected to write interrupts explicitly in their programs!

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (
$$\uparrow$$
 request $(V, M_{\text{feedClient}})$)

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$
- | run $M_{\text{feedServer}}$

ate)

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request $(V, M_{\text{feedClient}})$) | run $M_{\text{feedServer}}$

 $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}}) \mid \mid \text{ run } M_{\text{feedServer}}$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (
$$\uparrow$$
 request $(V, M_{\text{feedClient}})$)

- $\twoheadrightarrow \quad \uparrow \text{ request } (V, \text{run } M_{\text{feedClient}}) \mid | \text{ run } M_{\text{feedServer}}$
- $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | | \downarrow \text{ request } (V, \text{ run } M_{\text{feedServer}}))$

run M_{feed}Server

(propaga (broadc

ate) ast)

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes.

run (
$$\uparrow$$
 request $(V, M_{\text{feedClient}}))$

- \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$ $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | \downarrow \text{ request } (V, \text{ run } M_{\text{feedServer}}))$

run M_{feed}Server

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (
$$\uparrow$$
 request $(V, M_{\text{feedClient}})$)

- $\twoheadrightarrow \quad \uparrow \text{ request } (V, \text{run } M_{\text{feedClient}}) \mid | \text{ run } M_{\text{feedServer}}$
- $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | | \downarrow \text{ request } (V, \text{ run } M_{\text{feedServer}}))$

run M_{feed}Server

(propaga (broadc

ate) ast)

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$ \rightarrow \uparrow request $(V, \text{run } M_{\text{feedClient}} | | \downarrow \text{request } (V, \text{run } M_{\text{feedServer}}))$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$ $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | | \downarrow \text{ request } (V, \text{ run } M_{\text{feedServer}}))$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$
- \rightarrow \uparrow request $(V, \text{run } M_{\text{feedClient}} | \downarrow \text{request } (V, \text{run } M_{\text{feedServer}}))$

 \rightarrow \uparrow request $(V, \text{run } M_{\text{feedClient}} | | \text{run } (\downarrow \text{request } (V, M_{\text{feedServer}})))$

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$
- \rightarrow \uparrow request $(V, \text{run } M_{\text{feedClient}} | \downarrow \text{request } (V, \text{run } M_{\text{feedServer}}))$
- $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | | \text{ run } (\downarrow \text{ request } (V, M_{\text{feedServer}})))$
- But interrupts can also appear spontaneously!

- Programmers are not expected to write interrupts explicitly in their programs!
- Instead, interrupts are (commonly) induced by signals from other processes

run (\uparrow request (V, $M_{\text{feedClient}}$)) | run $M_{\text{feedServer}}$

- \rightarrow \uparrow request (V, run $M_{\text{feedClient}}$) | run $M_{\text{feedServer}}$
- \rightarrow \uparrow request $(V, \text{run } M_{\text{feedClient}} | \downarrow \text{request } (V, \text{run } M_{\text{feedServer}}))$
- $\rightarrow \quad \uparrow \text{ request } (V, \text{ run } M_{\text{feedClient}} | | \text{ run } (\downarrow \text{ request } (V, M_{\text{feedServer}})))$
- But interrupts can also appear spontaneously!
 - e.g. the user clicking a button or the environment preempting a process

To react to interrupts our computations can install interrupt handlers

To react to interrupts our computations can install interrupt handlers $M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$

To react to interrupts our computations can install interrupt handlers $M, N := \dots$ | promise (op $x \mapsto M$) as p in N interrupt name

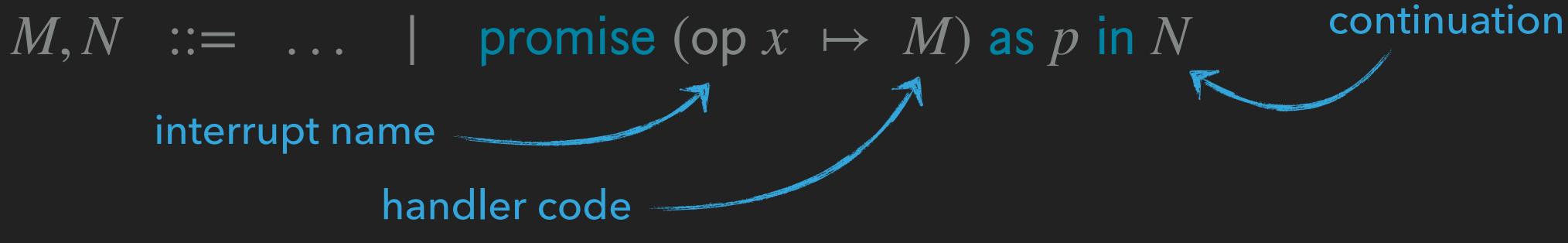
To react to interrupts our computations can install interrupt handlers

$M, N ::= \dots$ | promise (op $x \mapsto M$) as p in Ninterrupt name handler code

To react to interrupts our computations can install interrupt handlers

interrupt name

handler code



To react to interrupts our computations can install interrupt handlers $M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$

To react to interrupts our computations can install interrupt handlers

propagate outwards

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>)

To react to interrupts our computations can install interrupt handlers

propagate outwards \rightarrow promise (op $x \mapsto M_1$) as p in (let $x = M_2$ in N)

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) let $y = (\text{promise}(\text{op } x \mapsto M_1) \text{ as } p \text{ in } M_2) \text{ in } N$

To react to interrupts our computations can install interrupt handlers

propagate outwards

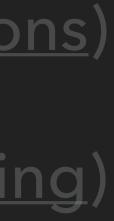
$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>)

To react to interrupts our computations can install interrupt handlers

propagate outwards

triggered by matching interrupts

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>)



To react to interrupts our computations can install interrupt handlers

propagate outwards

 \rightarrow let p = M[V/x] in \downarrow op (V, N)

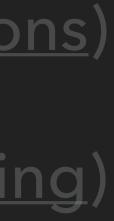
$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) triggered by matching interrupts (interrupts are like <u>deep effect handling</u>) $\downarrow \text{ op } (V, \text{ promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } N)$

To react to interrupts our computations can install interrupt handlers

propagate outwards

triggered by matching interrupts

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>)



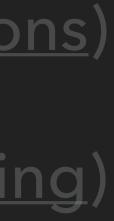
To react to interrupts our computations can install interrupt handlers

propagate outwards

triggered by matching interrupts

not triggered by non-matching interrupts

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>)



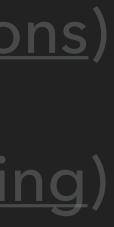
To react to interrupts our computations can install interrupt handlers

propagate outwards

not triggered by non-matching interrupts $\downarrow \text{ op } (V, \text{ promise } (\text{op' } x \mapsto M) \text{ as } p \text{ in } N)$ \rightarrow promise (op' $x \mapsto M$) as p in \downarrow op (V, N)

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) triggered by matching interrupts (interrupts are like <u>deep effect handling</u>)

 $(op \neq op')$



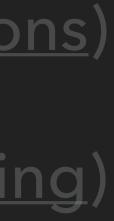
To react to interrupts our computations can install interrupt handlers

propagate outwards

triggered by matching interrupts

not triggered by non-matching interrupts

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>)

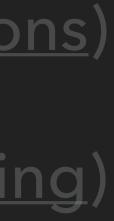


To react to interrupts our computations can install interrupt handlers

propagate outwards

- not triggered by non-matching interrupts
- do not block their continuation

$M, N ::= \dots$ | promise (op $x \mapsto M$) as p in N (just like <u>algebraic operations</u>) triggered by matching interrupts (interrupts are like <u>deep effect handling</u>)



To react to interrupts our computations can install interrupt handlers

propagate outwards

- not triggered by non-matching interrupts
- do not block their continuation

promise (op $x \mapsto M$) as p in N \rightsquigarrow promise (op $x \mapsto M$) as p in N'

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>)

triggered by matching interrupts (interrupts are like <u>deep effect handling</u>)

 $N \rightsquigarrow N'$

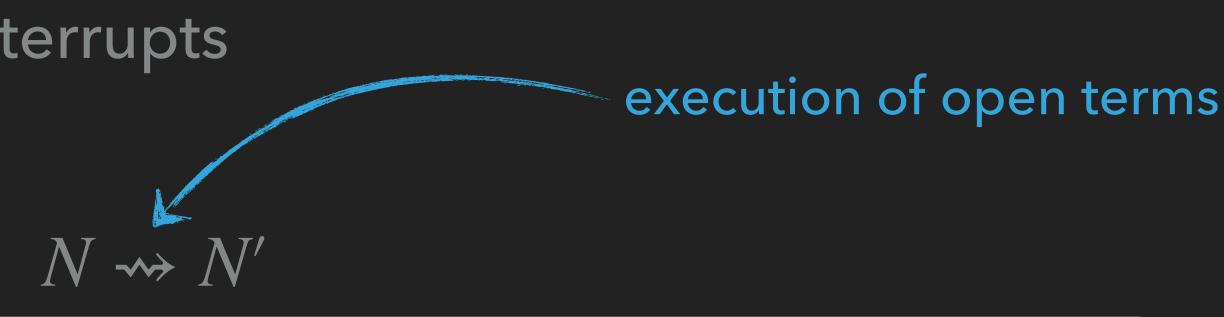
To react to interrupts our computations can install interrupt handlers

propagate outwards

- triggered by matching interrupts
- not triggered by non-matching interrupts
- do not block their continuation

promise (op $x \mapsto M$) as p in N \rightsquigarrow promise (op $x \mapsto M$) as p in N'

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>)



To react to interrupts our computations can install interrupt handlers

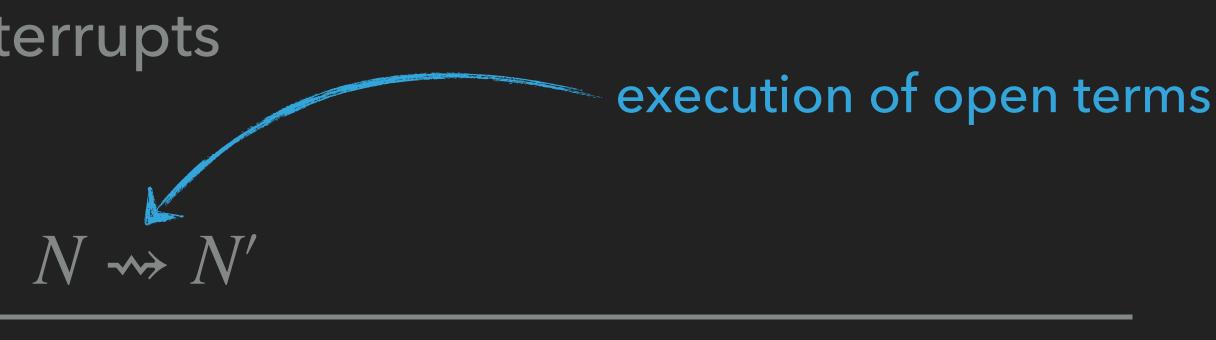
propagate outwards

- triggered by matching interrupts
- not triggered by non-matching interrupts
- do not block their continuation

promise (op $x \mapsto M$) as p in N \rightsquigarrow promise (op $x \mapsto M$) as p in N' p has promise type $\langle X \rangle$

$M, N ::= \dots$ | promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>)

(interrupts are like <u>deep effect handling</u>)



To react to interrupts our computations can install interrupt handlers

propagate outwards

- triggered by matching interrupts
- not triggered by non-matching interrupts
- do not block their continuation

$M, N ::= \dots$ promise (op $x \mapsto M$) as $p \in N$ (just like <u>algebraic operations</u>) (interrupts are like <u>deep effect handling</u>) execution of open terms promise types ensure type safety! promise (op $x \mapsto M$) as p in N \rightsquigarrow promise (op $x \mapsto M$) as p in N' p has promise type $\langle X \rangle$

Programmers can selectively block execution to await a promise to be fulfilled

Programmers can selectively block execution to await a promise to be fulfilled

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N

promise-typed value

Programmers can selectively block execution to await a promise to be fulfilled

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

reduces when provided a fulfilled promise

Programmers can selectively block execution to await a promise to be fulfilled

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

reduces when provided a fulfilled promise

await $\langle V \rangle$ until $\langle x \rangle$ in N

 $\rightarrow N[V/x]$

reduces when provided a fulfilled promise

Programmers can selectively block execution to await a promise to be fulfilled

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

reduces when provided a fulfilled promise

blocks execution on yet-to-be-fulfilled promises

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

 $\rightarrow \rightarrow$

- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises
 - await p until $\langle x \rangle$ in N

 $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

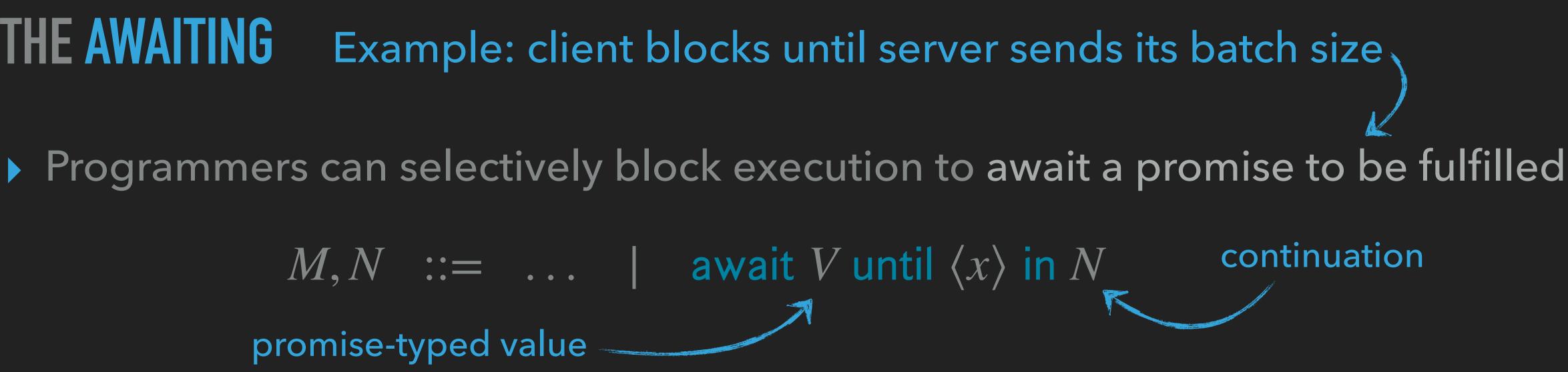
reduces when provided a fulfilled promise

blocks execution on yet-to-be-fulfilled promises

HE AWAIIING Example: client blocks until server sends its batch size, Programmers can selectively block execution to await a promise to be fulfilled $M, N ::= \dots$ | await V until $\langle x \rangle$ in N continuation promise-typed value

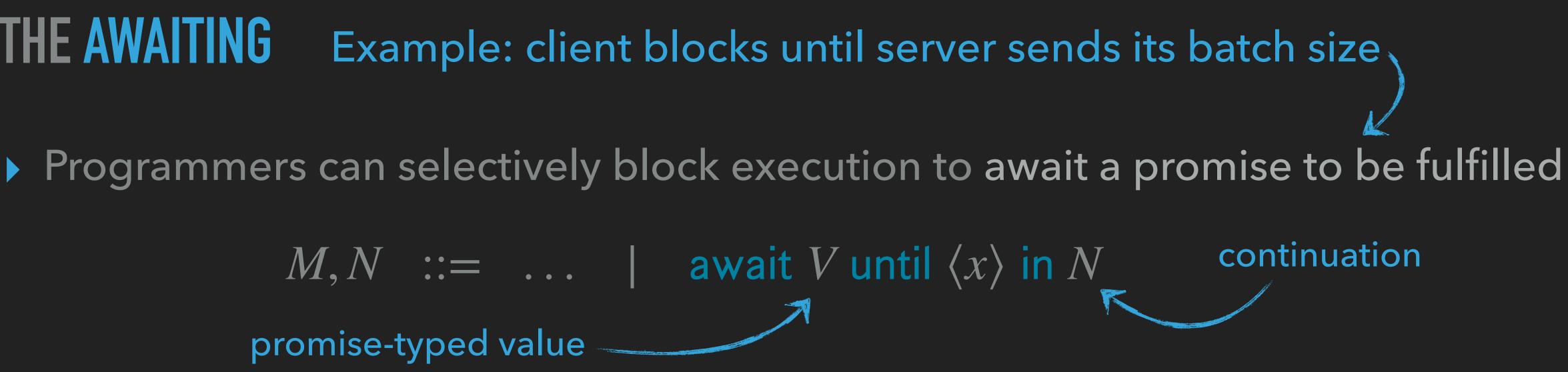
- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises

- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises
- We now also have all the pieces to express alg. operation calls op (V, y, M) as



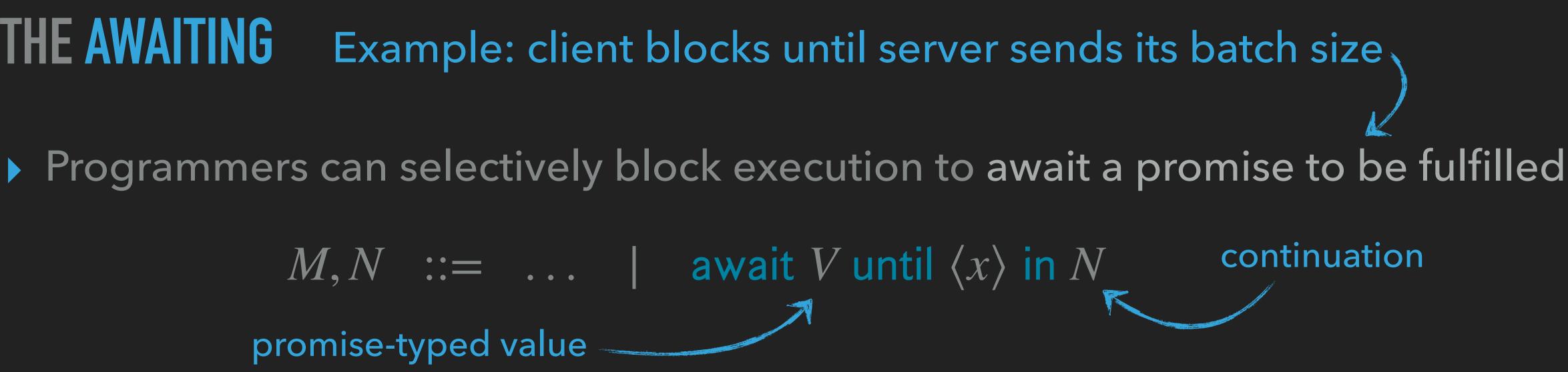
reduces when provided a fulfilled promise

blocks execution on yet-to-be-fulfilled promises

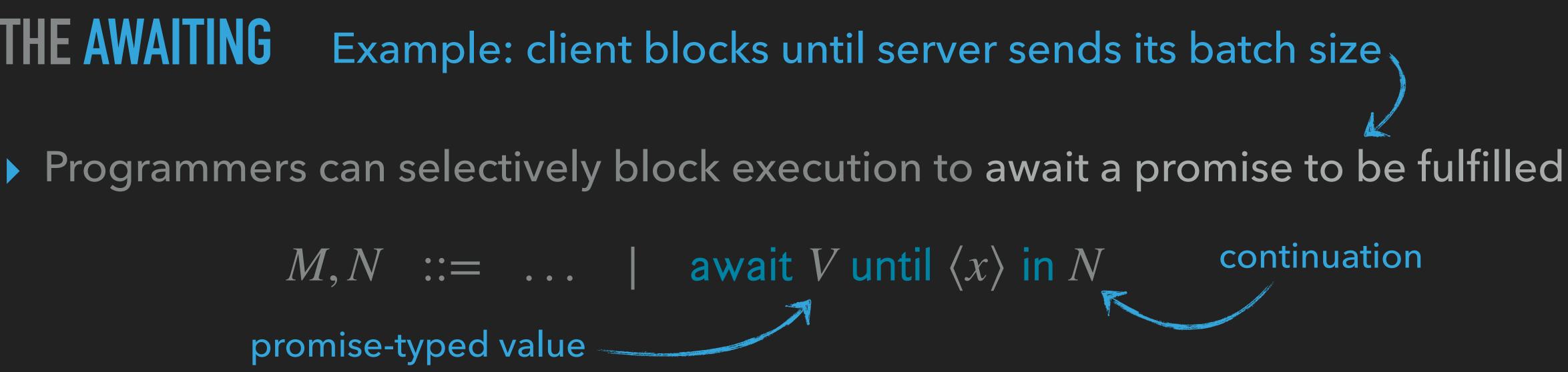


- We now also have all the pieces to express alg. operation calls op (V, y, M) as \uparrow op-sig $(V, \text{ promise (op-int } x \mapsto \text{ return } \langle x \rangle) \text{ as } p \text{ in (await } p \text{ until } \langle y \rangle \text{ in } M))$

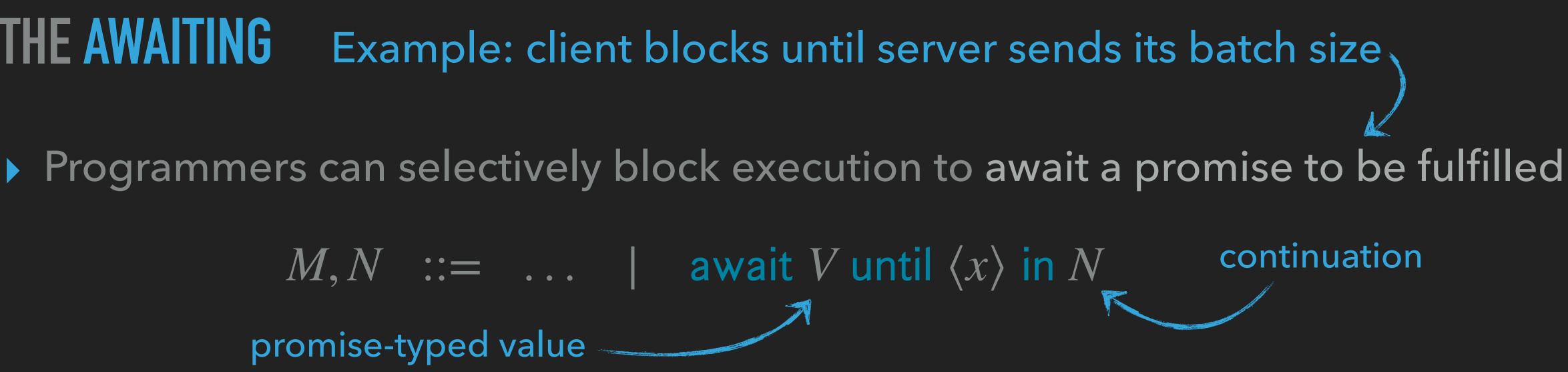
- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises
- We now also have all the pieces to express alg. operation calls op (V, y, M) as



- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises
- We now also have all the pieces to express alg. operation calls op (V, y, M) as
 - and the implementations of op in parallel processes as follows



- reduces when provided a fulfilled promise
- blocks execution on yet-to-be-fulfilled promises
- We now also have all the pieces to express alg. operation calls op (V, y, M) as
 - and the implementations of op in parallel processes as follows promise (op-sig $x \mapsto \langle M_{op} \rangle$) as p in (await p until $\langle y \rangle$ in \uparrow op-int (y, return ()))




```
let client () =

    batchSizeRequest ();

  promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
       cachedData := !cachedData @ newBatch;
       requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
       let cachedSize = length !cachedData in
       (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
          return ());
       (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
          currentItem := !currentItem + 1
       else

    display "please wait a bit and try again");

       clientLoop batchSize
     ) as p in return p
  in
```


let client () =

```
↑ batchSizeRequest ();
promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
```

```
let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
```

```
let requestNewData offset =
  requestInProgress := true;
  ↑ request offset;
  promise (response newBatch \mapsto
    cachedData := !cachedData @ newBatch;
    requestInProgress := false; return \langle () \rangle
  ) as _ in return ()
```

in

```
let rec clientLoop batchSize =
  promise (nextItem () \mapsto
    let cachedSize = length !cachedData in
    (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
       requestNewData (cachedSize + 1)
     else
       return ());
    (if !currentItem < cachedSize then
         display (toString (nth !cachedData !currentItem));
       currentItem := !currentItem + 1
     else
        display "please wait a bit and try again");
    clientLoop batchSize
   as p in return p
in
```

await batchSizePromise until (batchSize) in clientLoop batchSize

- * request server's settings,
- * install int. handler for the response, and
- * block until they arrive (but only after useful work)


```
let client () =

    batchSizeRequest ();

  promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
       cachedData := !cachedData @ newBatch;
       requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
       let cachedSize = length !cachedData in
       (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
          return ());
       (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
          currentItem := !currentItem + 1
       else

    display "please wait a bit and try again");

       clientLoop batchSize
     ) as p in return p
  in
```



```
let client () =

    batchSizeRequest ();

  promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
       cachedData := !cachedData @ newBatch;
       requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
       (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
          return ());
      (if !currentItem < cachedSize then

    display (toString (nth !cachedData !currentItem));

          currentItem := !currentItem + 1
       else
          † display "please wait a bit and try again");
       clientLoop batchSize
    ) as p in return p
  in
```

client's main loop is a rec. defined int. handler * reacts to next item interrupts from user * issues display signals or new data requests


```
let client () =

    batchSizeRequest ();

  promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
       cachedData := !cachedData @ newBatch;
       requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
       let cachedSize = length !cachedData in
       (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
          return ());
       (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
          currentItem := !currentItem + 1
       else

    display "please wait a bit and try again");

       clientLoop batchSize
     ) as p in return p
  in
```



```
let client () =
  ↑ batchSizeRequest ();
  promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
          return ());
      (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
          currentItem := !currentItem + 1
       else
           display "please wait a bit and try again");
       clientLoop batchSize
     ) as p in return p
  in
```

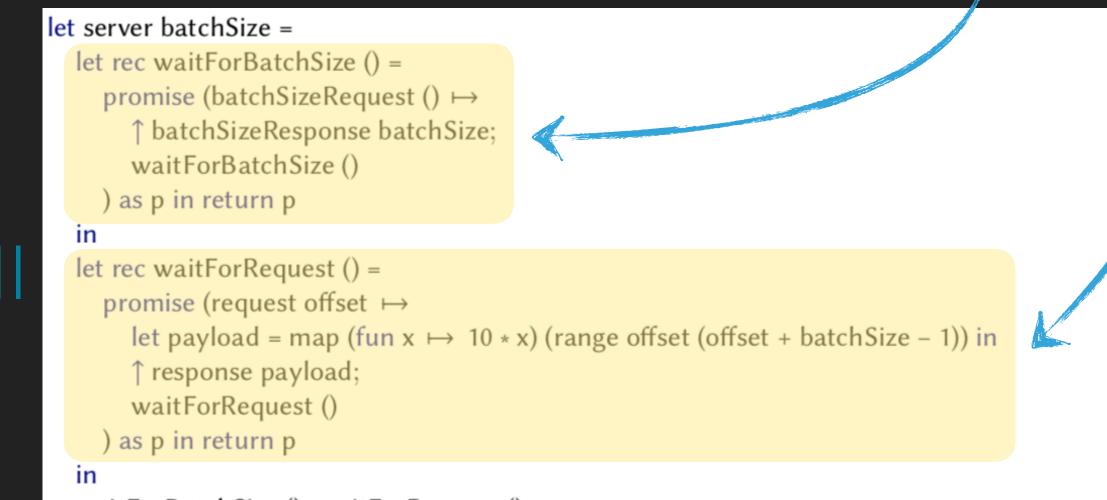

server processes are commonly rec. defined int. handlers

let client () =

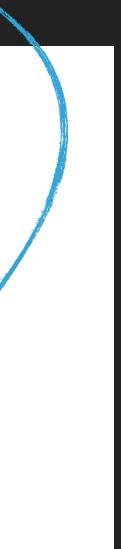
```
↑ batchSizeRequest ();
promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
```

```
let (cachedData , requestInProgress , currentItem) = (ref [] , ref false , ref 0) in
```

```
let requestNewData offset =
  requestInProgress := true;
  ↑ request offset;
  promise (response new Batch \mapsto
    cachedData := !cachedData @ newBatch;
    requestInProgress := false; return \langle () \rangle
  ) as _ in return ()
in
let rec clientLoop batchSize =
  promise (nextItem () \mapsto
    let cachedSize = length !cachedData in
    (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
       requestNewData (cachedSize + 1)
     else
       return ());
    (if !currentItem < cachedSize then
         display (toString (nth !cachedData !currentItem));
       currentItem := !currentItem + 1
     else
         display "please wait a bit and try again");
     clientLoop batchSize
   as p in return p
in
```



waitForBatchSize (); waitForRequest ()



```
let client () =
  promise (batchSizeResponse batchSize → return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
         requestNewData (cachedSize + 1)
       else
         return ());
      (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
         currentItem := !currentItem + 1
       else
          display "please wait a bit and try again");
      clientLoop batchSize
     ) as p in return p
  in
```



```
let client () =
  promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
         requestNewData (cachedSize + 1)
       else
         return ());
      (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
         currentItem := !currentItem + 1
       else
           display "please wait a bit and try again");
       clientLoop batchSize
     ) as p in return p
  in
```

```
let rec user () =
    let rec wait n =
        if n = 0 then return () else wait (n - 1)
    in
        în
        în nextItem (); wait 10; user ()
```



```
let client () =
  promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
         requestNewData (cachedSize + 1)
       else
         return ());
      (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
         currentItem := !currentItem + 1
       else
           display "please wait a bit and try again");
       clientLoop batchSize
     ) as p in return p
  in
```

```
let rec user () =
    let rec wait n =
        if n = 0 then return () else wait (n - 1)
    in
        î nextItem (); wait 10; user ()
```



```
let client () =
  promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
         requestNewData (cachedSize + 1)
       else
         return ());
      (if !currentItem < cachedSize then
           display (toString (nth !cachedData !currentItem));
          currentItem := !currentItem + 1
       else
           display "please wait a bit and try again");
       clientLoop batchSize
     as p in return p
  in
```

```
let rec user () =
    let rec wait n =
        if n = 0 then return () else wait (n - 1)
    in
        î nextItem (); wait 10; user ()
```

10 11 12 13 14 please wait a bit


```
let client () =
  promise (batchSizeResponse batchSize \mapsto return (batchSize)) as batchSizePromise in
  let (cachedData, requestInProgress, currentItem) = (ref [], ref false, ref 0) in
  let requestNewData offset =
    requestInProgress := true;
    ↑ request offset;
    promise (response newBatch \mapsto
      cachedData := !cachedData @ newBatch;
      requestInProgress := false; return \langle () \rangle
    ) as _ in return ()
  in
  let rec clientLoop batchSize =
    promise (nextItem () \mapsto
      let cachedSize = length !cachedData in
      (if (!currentItem > cachedSize - batchSize / 2) && (not !requestInProgress) then
          requestNewData (cachedSize + 1)
       else
         return ());
      (if !currentItem < cachedSize then

    display (toString (nth !cachedData !currentItem));

          currentItem := !currentItem + 1
       else
          ↑ display "please wait a bit and try again");
       clientLoop batchSize
     as p in return p
  in
```

```
let rec user () =
    let rec wait n =
        if n = 0 then return () else wait (n − 1)
    in
        î nextItem (); wait 10; user ()
```

10 11 12 13 14 please wait a bit

 \triangleright Extension of the fine-grain call-by-value λ -calculus

values

 $V, W ::= \dots | \langle V \rangle$

computations

processes

 $P, Q ::= \operatorname{run} M | P | Q | \uparrow \operatorname{op} (V, P) | \downarrow \operatorname{op} (W, P)$

$M, N ::= \dots$ | gen. recursion | previously shown computations

- \triangleright Extension of the fine-grain call-by-value λ -calculus
 - ▶ values $V, W ::= \dots | \langle V \rangle$
 - computations
 - processes
 - $P, Q ::= \operatorname{run} M \mid P \mid Q \mid \uparrow \operatorname{op} (V, P) \mid \downarrow \operatorname{op} (W, P)$

$M, N ::= \dots$ | gen. recursion | previously shown computations

- \triangleright Extension of the fine-grain call-by-value λ -calculus
 - values $V, W ::= \dots | \langle V \rangle$ a fulfilled promise
 - computations
 - processes
 - $P, Q ::= \operatorname{run} M \mid P \mid Q \mid \uparrow \operatorname{op} (V, P) \mid \downarrow \operatorname{op} (W, P)$

$M, N ::= \dots$ | gen. recursion | previously shown computations

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

► Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to C \mid \langle X \rangle$

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

► Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to C \mid \langle X \rangle$

promise type

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$

Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

promise type

Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$

promise type

• Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

used to type payloads of signals & interrupts

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

- Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$
- Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type

used to type payloads of signals & interrupts

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

• Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$ type of returned values

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type

used to type payloads of signals & interrupts

► Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$ type of returned values

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type

used to type payloads of signals & interrupts

possible issued signals $O \subseteq \Sigma$

Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

• Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$ type of returned values

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type used to type payloads of signals & interrupts possible installed interrupt handlers $\iota = \{ \dots, \operatorname{op}_i \to (o_i, \iota_i), \dots \}$ possible issued signals $O \subseteq \Sigma$

Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

• Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

- Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$ type of returned values
- ▶ Process types $\mathscr{P}, \mathscr{Q} ::= X !! (o, \iota) | \mathscr{P} | | \mathscr{Q}$

Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type used to type payloads of signals & interrupts possible installed interrupt handlers $\iota = \{ \dots, \operatorname{op}_i \to (O_i, \iota_i), \dots \}$ possible issued signals $O \subseteq \Sigma$

Typing judgements $\Gamma \vdash V : X$ $\Gamma \vdash M : \mathscr{C}$ $\Gamma \vdash P : \mathscr{P}$

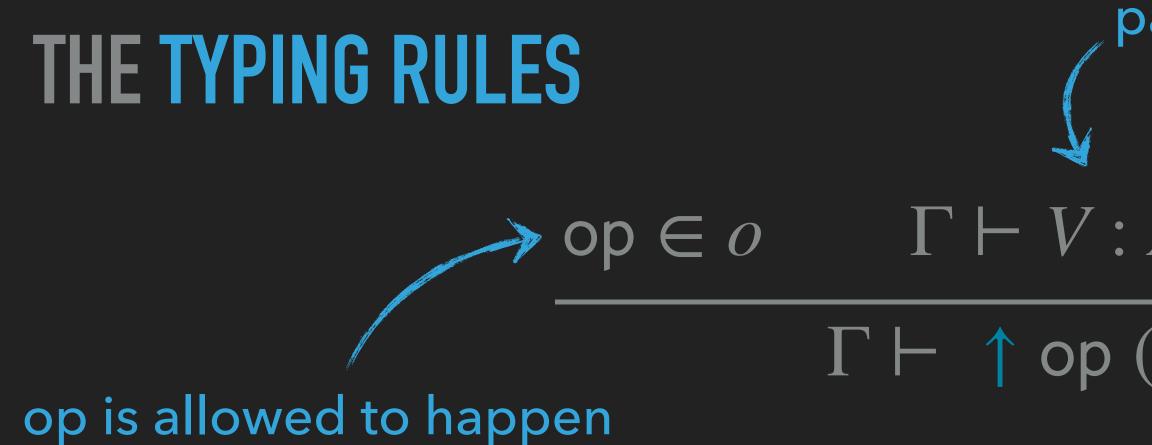
• Ground/mobile types $A, B := b \mid 1 \mid 0 \mid A \times B \mid A + B$

- Computation types $\mathscr{C}, \mathscr{D} ::= X ! (o, \iota)$ type of returned values
- Process types $\mathscr{P}, \mathscr{Q} ::= X !! (o, \iota) | \mathscr{P} | \mathscr{Q}$

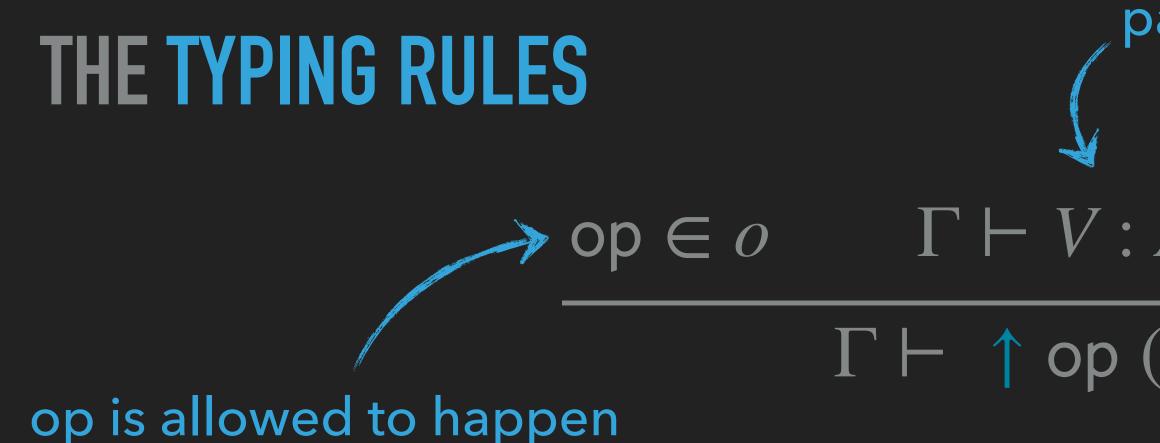
Value types $X, Y ::= b \mid 1 \mid 0 \mid X \times Y \mid X + Y \mid X \to \mathscr{C} \mid \langle X \rangle$ promise type used to type payloads of signals & interrupts possible installed interrupt handlers $\iota = \{ \dots, \operatorname{op}_i \to (O_i, \iota_i), \dots \}$ possible issued signals $O \subseteq \Sigma$ match the structure of processes

op ∈ o Γ ⊢ V : A_{op} Γ ⊢ M : X ! (o, ι) Γ ⊢ ↑ op (V, M) : X ! (o, ι)

op is allowed to happen

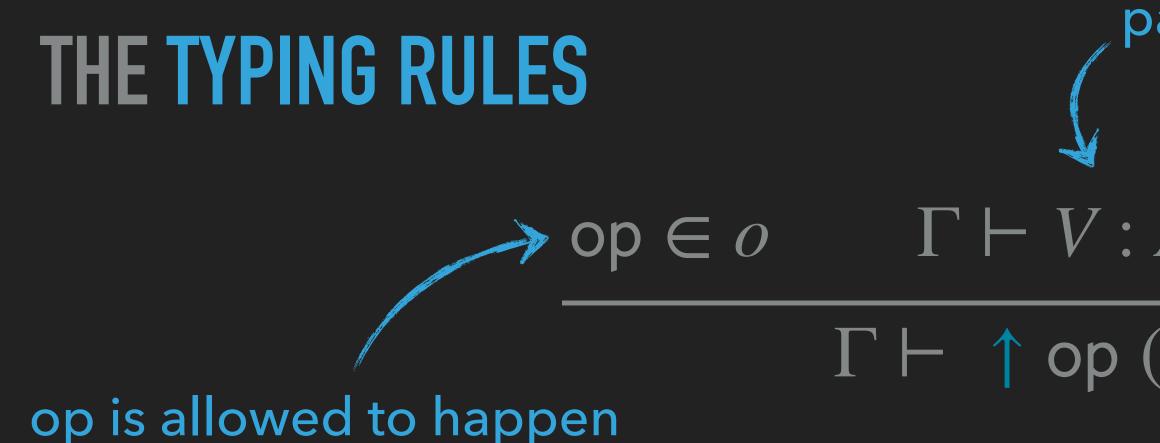


$\exists o \qquad \Gamma \vdash V : A_{op} \qquad \overline{\Gamma \vdash M} : X ! (o, i)$ $\Gamma \vdash \uparrow op (V, M) : X ! (o, i)$



$op \in o$ $\Gamma \vdash V : A_{op}$ $\Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \uparrow op (V, M) : X ! (o, \iota)$

$\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \bigcup \mathsf{op} (V, M) : X ! (\mathsf{op} \downarrow (o, \iota))$



 $\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \uparrow \operatorname{op}(V, M) : X ! (o, \iota)$

 $\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \downarrow \mathsf{op} (V, M) : X ! (\mathsf{op} \downarrow (o, \iota))$

action of interrupts on effect information

$op \downarrow (o, \iota) = \begin{cases} (o \cup o', \iota[op \mapsto \bot] \cup \iota') & \text{if } \iota(op) = (o', \iota') \\ (o, \iota) & \text{otherwise} \end{cases}$

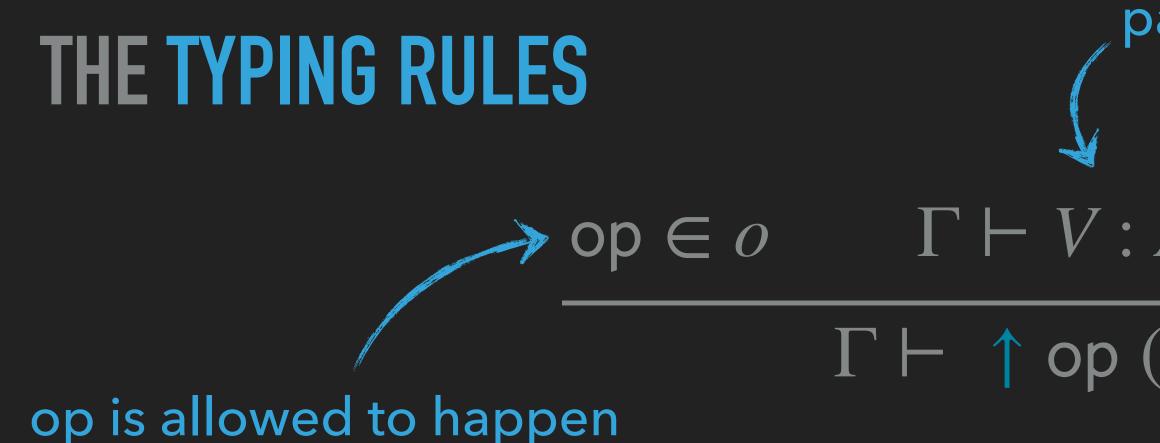
op is allowed

 $\Gamma \vdash \bigcup \mathsf{op} (V, M) : X ! (\mathsf{op} \bigcup (o, \iota))$

payload value matches op's signature op : A_{op}

 $\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$

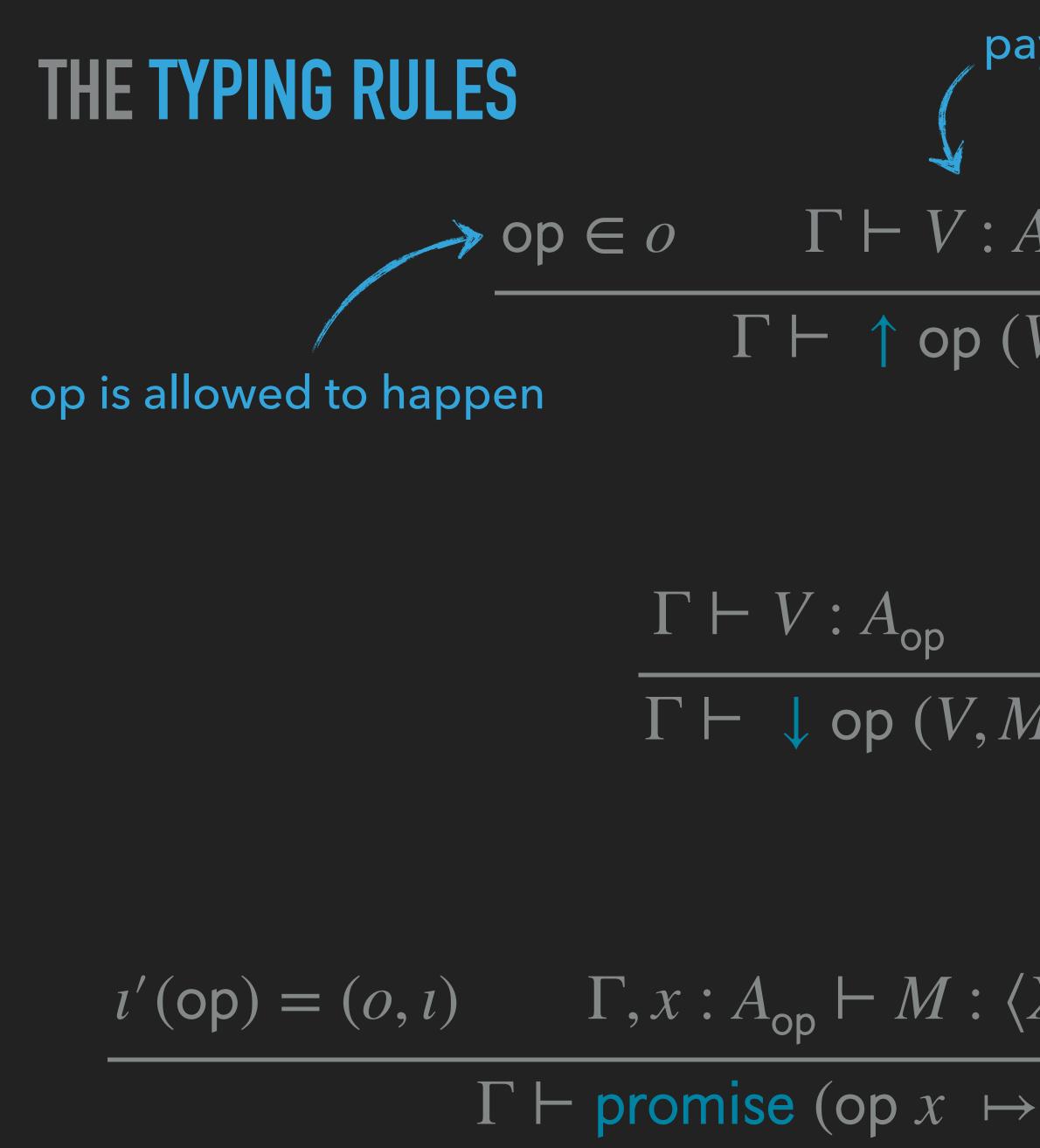
action of interrupts on effect information



 $\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \uparrow \operatorname{op}(V, M) : X ! (o, \iota)$

 $\Gamma \vdash V : A_{op} \qquad \Gamma \vdash M : X ! (o, \iota)$ $\Gamma \vdash \downarrow \mathsf{op} (V, M) : X ! (\mathsf{op} \downarrow (o, \iota))$

action of interrupts on effect information



$$A_{op} \qquad \Gamma \vdash M : X ! (o, i)$$

$$V, M) : X ! (o, i)$$

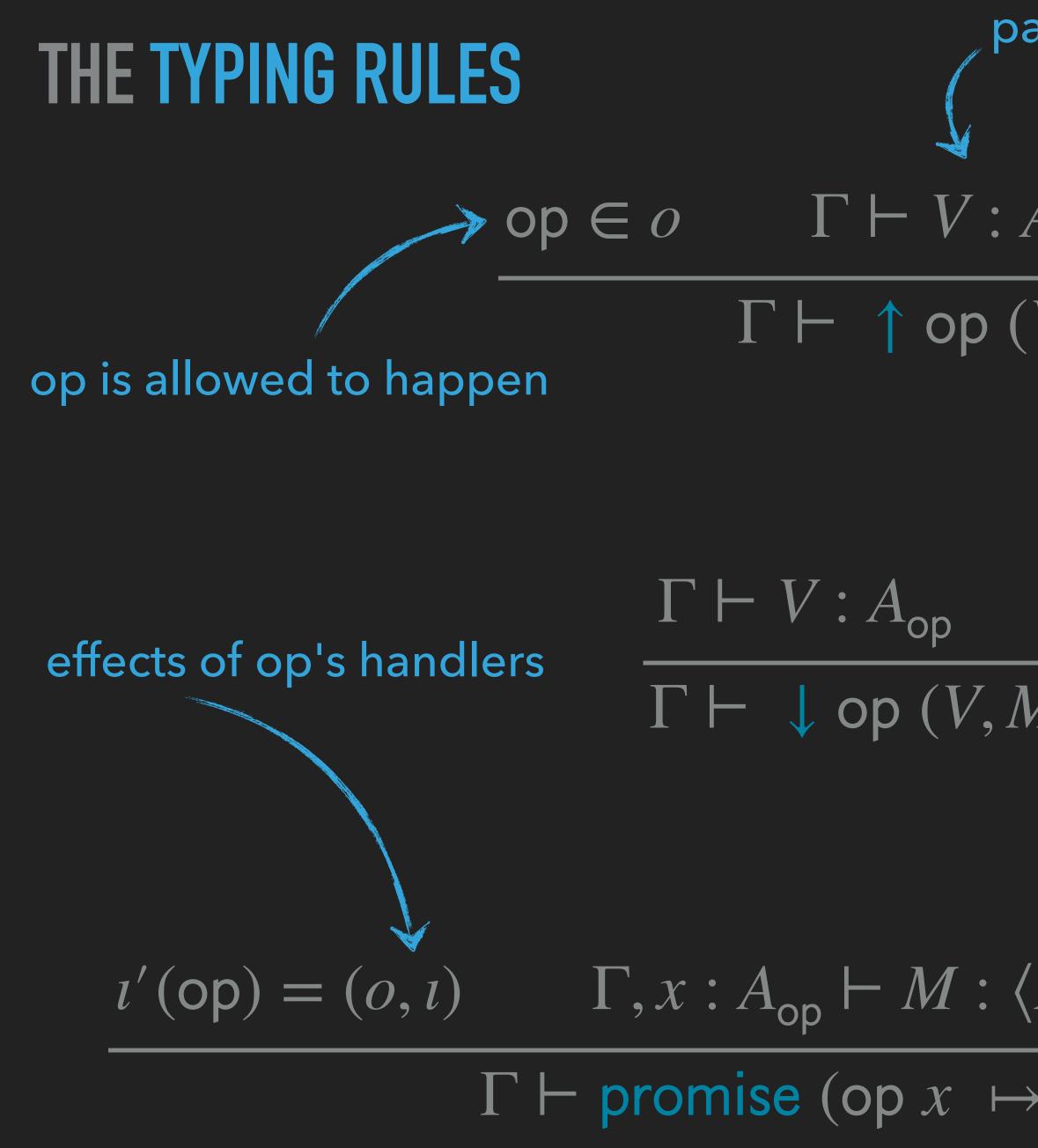
$$\Gamma \vdash M : X ! (o, i)$$

$$\overline{M} : X ! (op \downarrow (o, i))$$
action of interrupt
on effect informat

$$(X) ! (o, i) \qquad \Gamma, p : \langle X \rangle \vdash N : Y ! (o', i')$$

$$M) \text{ as } p \text{ in } N : Y ! (o', i')$$

S



$$A_{op} \qquad \Gamma \vdash M : X ! (o, i)$$

$$V, M) : X ! (o, i)$$

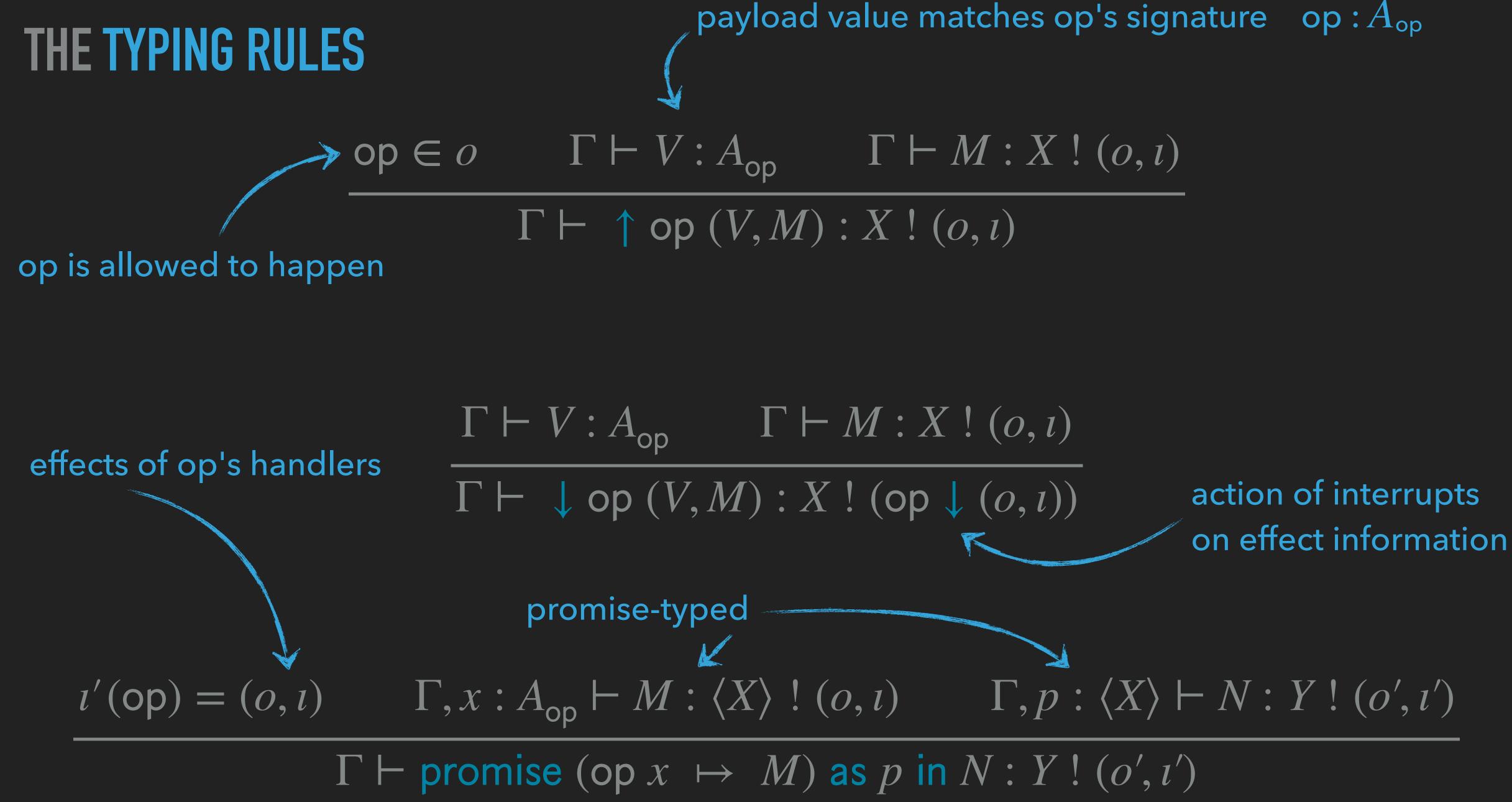
$$\Gamma \vdash M : X ! (o, i)$$

$$\overline{M} : X ! (op \downarrow (o, i))$$
action of interrupt
on effect informat

$$(X) ! (o, i) \qquad \Gamma, p : \langle X \rangle \vdash N : Y ! (o', i')$$

$$M) \text{ as } p \text{ in } N : Y ! (o', i')$$

S



Small-step reduction semantics $M \rightsquigarrow N P \rightsquigarrow Q$

- Small-step reduction semantics $M \rightsquigarrow N P \rightsquigarrow Q$
 - standard reduction rules from the fine-grain call-by-value λ -calculus

- Small-step reduction semantics $M \rightsquigarrow N \qquad P \rightsquigarrow Q$
 - \triangleright standard reduction rules from the fine-grain call-by-value λ -calculus
 - reduction rules we have already seen

- Small-step reduction semantics $M \rightsquigarrow N$ $P \rightsquigarrow O$
 - \triangleright standard reduction rules from the fine-grain call-by-value λ -calculus
 - reduction rules we have already seen

commutativity of signals with int. handlers (makes type safety interesting) promise (op $x \mapsto M$) as p in $(\uparrow op'(V, N))$ \rightarrow \uparrow op' (V, promise (op $x \mapsto M$) as $p \in N$)

- Small-step reduction semantics $M \rightsquigarrow N$ $P \rightsquigarrow O$
 - \triangleright standard reduction rules from the fine-grain call-by-value λ -calculus
 - reduction rules we have already seen

 - evaluation context rules

commutativity of signals with int. handlers (makes type safety interesting) promise (op $x \mapsto M$) as p in $(\uparrow op'(V, N))$ \rightarrow \uparrow op' (V, promise (op $x \mapsto M$) as $p \in N$)

Progress

Progress

Type preservation

$\blacktriangleright M: X! (o, \iota) \quad \text{implies} \quad \exists N . M \rightsquigarrow N \quad \text{or} \quad M \text{ in result form}$

Progress

$\blacktriangleright M: X! (o, \iota) \qquad \text{implies}$

Type preservation

- * signals
- * interrupt handlers
- * blocked awaits

or

return values

implies $\exists N . M \rightsquigarrow N$ or M in result form

eval. ctxs. only bind promise-typed variables
Progress

$\blacktriangleright M: X! (o, \iota) \qquad \text{implies}$

Type preservation

ed variables interpretation in the second second

- * signals
- * interrupt handlers

* blocked awaits or return values

implies $\exists N . M \rightsquigarrow N$ or M in result form

eval. ctxs. only bind promise-typed variables Progress

- $\blacktriangleright P: \mathscr{P} \quad \text{implies} \quad \exists Q . P \rightsquigarrow Q \quad \text{or} \quad P \text{ in result form}$

Type preservation

- * signals
- * interrupt handlers
- * blocked awaits

or return values

 $\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form

eval. ctxs. only bind promise-typed variables Progress

- $\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form
- $\blacktriangleright P: \mathscr{P} \quad \text{implies}$

Type preservation

- * signals
- * interrupt handlers
- * blocked awaits

or return values

$\exists Q . P \rightsquigarrow Q$ or P in result form

- * signals
- * parallel compositions
- * individual computation result forms (w/o signals)

Progress

► $P: \mathscr{P}$ implies $\exists Q . P \rightsquigarrow Q$ or P in result form

Type preservation

 $\blacktriangleright H : X ! (o, i)$ implies $\exists N . M \rightsquigarrow N$ or M in result form

Progress

$\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form $\blacktriangleright P: \mathscr{P}$ implies $\exists Q . P \rightsquigarrow Q$ or P in result form

Type preservation $\Gamma \vdash M : X ! (o, \iota) \text{ and } M \rightsquigarrow N \text{ imply } \Gamma \vdash N : X ! (o, \iota)$

Progress

$\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form $\blacktriangleright P: \mathscr{P}$ implies $\exists Q.P \rightsquigarrow Q$ or P in result form

Type preservation

 $\Gamma \vdash M : X ! (o, \iota) \text{ and } M \rightsquigarrow N \text{ imply } \Gamma \vdash N : X ! (o, \iota)$ payloads do not include nor depend on promises

Progress

$\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form $\blacktriangleright P: \mathscr{P}$ implies $\exists Q.P \rightsquigarrow Q$ or P in result form

Type preservation

 $\Gamma \vdash M : X ! (o, \iota) \text{ and } M \rightsquigarrow N \text{ imply } \Gamma \vdash N : X ! (o, \iota)$ payloads do not include nor depend on promises \checkmark \land $\Gamma, p: \langle X \rangle \vdash V: A_{op} \Rightarrow \Gamma \vdash V: A_{op}$

Progress

$\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form $\blacktriangleright P: \mathscr{P}$ implies $\exists Q . P \rightsquigarrow Q$ or P in result form

Type preservation $\Gamma \vdash M : X ! (o, \iota) \text{ and } M \rightsquigarrow N \text{ imply } \Gamma \vdash N : X ! (o, \iota)$

THE TYPE SAFETY

Progress

- $\blacktriangleright P: \mathscr{P}$ implies $\exists Q . P \rightsquigarrow Q$ or P in result form

Type preservation $ightarrow \Gamma \vdash M : X ! (o, \iota)$ and $M \rightsquigarrow N$ imply $\Gamma \vdash N : X ! (o, \iota)$

$\blacktriangleright H : X ! (o, i)$ implies $\exists N . M \rightsquigarrow N$ or M in result form

 $\ \ \Gamma \vdash P : \mathscr{P} \text{ and } P \rightsquigarrow Q \text{ imply } \exists Q \cdot \mathscr{P} \rightsquigarrow Q \text{ and } \Gamma \vdash Q : Q$

THE TYPE SAFETY

Progress

- $\blacktriangleright P: \mathscr{P}$ implies $\exists Q. P \rightsquigarrow Q$ or P in result form

Type preservation $\Gamma \vdash M : X ! (o, \iota)$ and $M \rightsquigarrow N$ imply $\Gamma \vdash N : X ! (o, \iota)$

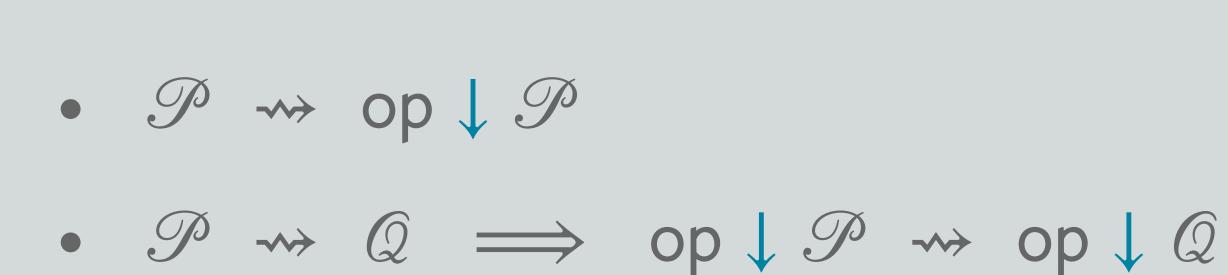
$\blacktriangleright M: X! (o, i)$ implies $\exists N. M \rightsquigarrow N$ or M in result form

$\blacktriangleright \ \Gamma \vdash P : \mathscr{P} \text{ and } P \twoheadrightarrow Q \text{ imply} \exists \mathcal{Q} \cdot \mathscr{P} \rightsquigarrow \mathcal{Q} \text{ and } \Gamma \vdash Q : \mathcal{Q}$ process types also "reduce"

- $op \downarrow (\mathcal{P} \mid \mathcal{Q}) = (op \downarrow \mathcal{P}) \mid (op \downarrow \mathcal{Q})$
- $\mathsf{op} \downarrow (X !! (o, \iota)) = X ! (\mathsf{op} \downarrow (o, \iota))$

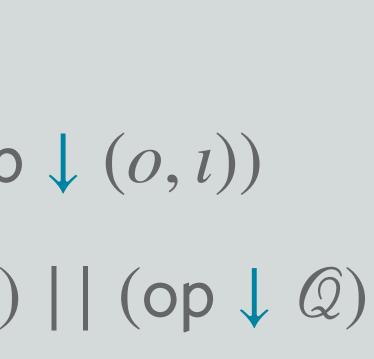
where

 $\mathcal{P} \rightsquigarrow \mathcal{P}$



Progress

► Ty



process types also "reduce"

M in result form or in result form

$\Gamma \vdash N : X ! (o, \iota)$

$op \downarrow (\mathscr{P} \mid \mathscr{Q}) = (op \downarrow \mathscr{P}) \mid (op \downarrow \mathscr{Q})$

 $op \downarrow (X !! (o, \iota)) = X ! (op \downarrow (o, \iota))$

where

THE

Ty

Progress

 $\mathcal{P} \rightarrow \mathcal{P}$

$\uparrow \operatorname{op}(V,P) \mid Q \rightsquigarrow \uparrow \operatorname{op}(V,P \mid \downarrow \operatorname{op}(V,Q))$

process types also "reduce"

M in result form or

in result form

$\Gamma \vdash N : X ! (o, \iota)$

Agda formalisation of λ_{a} 's type safety results

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{a} in OCaml, called Æff

- Agda formalisation of λ_{α} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{a} in OCaml, called Æff
 - interpreter

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{α} in OCaml, called Æff
 - interpreter
 - simple typechecker

(does not yet check effect information)

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{α} in OCaml, called Æff
 - interpreter
 - simple typechecker
 - all the examples in the paper

(does not yet check effect information)

(and more)

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{∞} in OCaml, called Æff
 - interpreter
 - simple typechecker
 - all the examples in the paper
 - command line interface

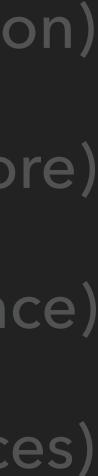
(does not yet check effect information) (and more)

(one nondeterministic reduction sequence)

- Agda formalisation of λ_{a} 's type safety results
 - only well-typed syntax, and subsumption rule as an explicit coercion
- > Prototype implementation of λ_{∞} in OCaml, called Æff
 - interpreter
 - simple typechecker
 - all the examples in the paper
 - command line interface
 - web interface

(does not yet check effect information) (and more)

(one nondeterministic reduction sequence) (possible to explore all reduction sequences)



Preemptive multi-threading

- Preemptive multi-threading
- Remote function calls
 - including simulating call cancellations

- Preemptive multi-threading
- Remote function calls
 - including simulating call cancellations
- (Concurrent) runners of algebraic effects

[Ahman & Bauer '20]

- Preemptive multi-threading
- Remote function calls
 - including simulating call cancellations
- (Concurrent) runners of algebraic effects
- Non-blocking post-processing of promised values

[Ahman & Bauer '20]

in the same spirit as how one is taught to program with futures and promises

- Preemptive multi-threading
- Remote function calls
 - including simulating call cancellations
- (Concurrent) runners of algebraic effects
- Non-blocking post-processing of promised values
- Go-like select statements
 - essentially n-ary (blocking) interrupt handlers

[Ahman & Bauer '20]

in the same spirit as how one is taught to program with futures and promises

(see the Æff examples' library)

- Preemptive multi-threading
- Remote function calls
 - including simulating call cancellations
- (Concurrent) runners of algebraic effects
- Non-blocking post-processing of promised values
- Go-like select statements
 - essentially n-ary (blocking) interrupt handlers

[Ahman & Bauer '20]

in the same spirit as how one is taught to program with futures and promises

(see the Æff examples' library)

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

```
let rec waitForStop () =
  promise (stop \_ \mapsto
      promise (go _ \mapsto return \langle () \rangle) as p in (await p until \langle \rangle in waitForStop ())
  ) as p' in return p'
```

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

- Multi-threading is one of the most exciting applications of algebraic effects
 - but the evaluation strategies one can express are cooperative in nature
 - each thread needs to explicitly yield back control, stalling others until then
- It is possible to simulate preemptive multi-threading [Dolan et al. '18]
 - but it requires low-level access to the specific runtime environment
- In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp



Bidirectional type system, effect-checking, and channel-based implementation

- Higher-order payloads and dynamic process creation
 - e.g., Fitch-style modal types to rule out enveloping promises from payloads

Bidirectional type system, effect-checking, and channel-based implementation

- Bidirectional type system, effect-checking, and channel-based implementation
- Higher-order payloads and dynamic process creation
 - e.g., Fitch-style modal types to rule out enveloping promises from payloads
- Denotational semantics based on monads for scoped effects

- Bidirectional type system, effect-checking, and channel-based implementation
- Higher-order payloads and dynamic process creation
 - e.g., Fitch-style modal types to rule out enveloping promises from payloads
- Denotational semantics based on monads for scoped effects [Piróg et al. '18]
- Using the effect system for effect-dependent optimisations $\vdash M : X ! (o, \iota)$ and $\iota(op) = \bot$ imply $\downarrow op (V, M) \rightsquigarrow M$

- Bidirectional type system, effect-checking, and channel-based implementation
- Higher-order payloads and dynamic process creation
 - e.g., Fitch-style modal types to rule out enveloping promises from payloads
- Denotational semantics based on monads for scoped effects [Piróg et al. '18]
- Using the effect system for effect-dependent optimisations $\vdash M : X ! (o, \iota)$ and $\iota(op) = \bot$ imply $\downarrow op (V, M) \rightsquigarrow M$
- Refine the "broadcast everything everywhere" communication strategy

- Bidirectional type system, effect-checking, and channel-based implementation
- Higher-order payloads and dynamic process creation
 - e.g., Fitch-style modal types to rule out enveloping promises from payloads
- Denotational semantics based on monads for scoped effects [Piróg et al. '18]
- Using the effect system for effect-dependent optimisations $\vdash M : X ! (o, \iota)$ and $\iota(op) = \bot$ imply $\downarrow op (V, M) \rightsquigarrow M$
- Refine the "broadcast everything everywhere" communication strategy
- In depth comparison with message-passing concurrency frameworks

- decoupling operation calls into signals and interrupts, and
- installing interrupt handlers and selectively blocking execution

> We have shown how to incorporate asynchrony within algebraic effects, by

- > We have shown how to incorporate asynchrony within algebraic effects, by
 - decoupling operation calls into signals and interrupts, and
 - installing interrupt handlers and selectively blocking execution
- We have captured these ideas in the λ_{a} -calculus
 - type-and-effect system, sub-effecting, and small-step operational semantics
 - type safety (reduction of open terms, hoisting 1 past promises, sel. blocking)

- > We have shown how to incorporate asynchrony within algebraic effects, by
 - decoupling operation calls into signals and interrupts, and
 - installing interrupt handlers and selectively blocking execution
- We have captured these ideas in the λ_{a} -calculus
 - type-and-effect system, sub-effecting, and small-step operational semantics
 - type safety (reduction of open terms, hoisting 1 past promises, sel. blocking)
- Examples ranging from preemptive multi-threading to remote function calls

- > We have shown how to incorporate asynchrony within algebraic effects, by
 - decoupling operation calls into signals and interrupts, and
 - installing interrupt handlers and selectively blocking execution
- We have captured these ideas in the λ_{a} -calculus
 - type-and-effect system, sub-effecting, and small-step operational semantics
 - type safety (reduction of open terms, hoisting 1 past promises, sel. blocking)
- Examples ranging from preemptive multi-threading to remote function calls
- > Agda formalisation of λ_{a} and prototype implementation Æff

